Citation:
SHEN Shu-guang, LI Huan-mei, WANG Tao, CAI Bei, QIN Hai-feng, WANG Chun-yan. Effect of coal rank on structure of coal-based solid acids and their catalytic performance in cellulose hydrolysis[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(12): 1466-1472.
-
Coal-based solid acids (CSAs) were successfully prepared from coals with different ranks at various carbonization temperatures. XRD, FT-IR and 13C NMR were employed to characterize structure of the catalysts. The influence of coal rank and carbonization temperature on the heterogeneous catalytic hydrolysis of cellulose was investigated by comparing the yield of reducing sugar and glucose. The results show that coal has a structure advantage over the other traditional carbon sources for solid acids. In contrast to the traditional carbon-based catalysts, the unit structure of CSA is fused aromatic rings linked by bridge bonds (-O-, -CH2-) and the fused aromatic rings are bearing side chains (-CH3, -OCH3, -CH2CH3) besides phenolic -OH, -COOH and -SO3H groups. In addition to the sulfonic groups, the others are derived from the raw coal structure. With rising carbonization temperature, the species and amounts of functional groups and the density of sulfonic acid groups are found to decrease gradually in CSAs, while the aromaticity of CSAs is opposite. The adjustability of CSAs structure and required carbonization temperatures are reduced with increasing coal rank. The CSAs show a higher activity in the cellulose hydrolysis process, wherein the Huolinhe CSA has the highest catalytic activity. The hydrolytic activity is influenced by the size and the stack height of the aromatic sheet, the bridge bond and the sulfonic acid group density, which is a result of the synergistic effect of a number of reactive groups.
-
-
-
[1]
[1] PARISH L D, FUKUOKA A. Cellulose conversion under heterogeneous[J]. Chemsuschem, 2008, 12: 969-975.
-
[2]
[2] HARA M, YOSHIDA T, TAKAGAKI A, TAKATA T, KONDO J N, HAYASHI S, DOMEN K. A carbon material as a strong protonic acid[J]. Angew Chem Int Ed, 2004, 43(22): 2955-2958.
-
[3]
[3] TODA M, TAKAGAKI A, OKAMURA M, KONDO J N, HAYASHI S, DOMEN K, HARA M. Green chemistry: Biodiesel made with sugar catalyst[J]. Nature, 2005, 438: 178-178.
-
[4]
[4] SUGANUMA S, NAKAJIMA K, KITANO M, YAMAGUCHI D, KATO H, HAYASHI S, HARA M. Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH Groups[J]. J Am Chem Soc, 2008, 130(38): 12787-12793.
-
[5]
[5] DEHKHODA A M, WEST A H, ELLIS N. Biochar based solid acid catalyst for biodiesel production[J]. Appl Catal A: Gen, 2010, 382(2): 197-204.
-
[6]
[6] 乌日娜, 王同华, 修志龙, 郭峰, 潘艳秋, 银建中. 生物质炭基固体酸催化剂的制备[J]. 催化学报, 2009, 30(12): 1203-1208. (WU Ri-na, WANG Tong-hua, XIU Zhi-long, GUO Feng, PAN Yan-qiu, YIN Jian-zhong. Preparation of a biomass carbon-based solid acid catalyst[J]. Chinese Journal of Catalysis, 2009, 30(12): 1203-1208.)
-
[7]
[7] WU Y Y, FU Z H, YIN D L, XU Q, LIU F L, LU C L, MAO L Q. Microwave-assisted hydrolysis of crystalline cellulose catalyzed by biomass char sulfonic acids[J]. Green Chemistry, 2010, 12: 696-700.
-
[8]
[8] SUGANUMA S, NAKAJIMA K, KITANO M, YAMAGUCHI D, KATO H, HAYASHI S, HARA M. Synthesis and acid catalysis of cellulose-derived carbon-based solid acid[J]. Solid State Sci, 2010, 12(6): 1029-1034.
-
[9]
[9] OKAMURA M, TAKAGAKI A, TODA M, KONDO J N, DOMEN K, TATSUMI T, HAYASHI S, HARA M. Acid-catalyzed reactions on flexible polycyclic aromatic carbon in amorphous carbon[J]. Chem Mater, 2006, 18(13): 3039-3045.
-
[10]
[10] WU Y Y, ZHANG C, LIU Y C, FU Z H, DAI B H, YIN D L. Biomass char sulfonic acids(BC-SO3H)-catalyzed hydrolysis of bamboo under microwave irradiation[J]. BioResources, 2012, 7(4): 5950-5959.
-
[11]
[11] 周丽娜, 刘可, 华伟明, 乐英红, 高滋. 碳基磺酸化固体酸材料的制备及其催化性能[J]. 催化学报, 2009, 30(3): 196-200. (ZHOU Li-na, LIU Ke, HUA Wei-ming, LE Ying-hong, GAO Zi. Preparation and catalytic performance of sulfonated carbon-based solid acid[J]. Chinese Journal of Catalysis, 2009, 30(3): 196-200. )
-
[12]
[12] ZHANG B H, REN J W, WANG Y Q, GUO Y, GUO Y L, LU G Z, WANG Y Q. Novel sulfonated carbonaceous materials from p-toluenesulfonic acid/glucose as a high-performance solid-acid catalyst[J]. Catal Commun, 2010, 11(7): 629-632.
-
[13]
[13] VAN DE VYVER S, PENG L, GEBOERS J, SCHEPERS H, CLIPPEL F, GOMMES C J, GODERIS B, JACOBS P A, SELS B F. Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose[J]. Green chemistry, 2010, 12(9): 1560-1563.
-
[14]
[14] MACIA-AGULLO J A, SEVILLA M, DIEZ M A, FUERTES A B. Synthesis of carbon-based solid acid microspheres and their application to the production of biodiesel[J]. ChemSusChem, 2010, 3(12): 1352-1354.
-
[15]
[15] BUDARIN V, CLARK J H, HARDY J J E, LUQUE R, MILKOWSKI K, TAVENER S J, WILSON A. Starbons: New starch-derived mesoporous carbonaceous materials with tunable properties[J]. Angew Chem, 2006, 118: 3866-3870.
-
[16]
[16] FUKUHARA K, NAKAJIMA K, KITANO M, KATO H, HAYASHI S, HARA M. Structure and catalysis of cellulose-derived amorphous carbon bearing SO3H groups[J]. ChemSusChem, 2011, 4(6): 778-784.
-
[17]
[17] KITANO M, YAMAGUCHI D, SUGANUMA S, NAKAJIMA K, KATO H, HAYASHI S, HARA M. Preparation of a sulfonated porous carbon catalyst with high specific surface area[J]. Catal lett, 2009, 131(1/2): 242-249.
-
[18]
[18] 王华瑜, 张长斌, 贺泓, 王莲. 磁性碳基磺酸化固体酸催化剂的制备及其催化水解纤维素[J]. 物理化学学报, 2010, 26(7): 1873-1878. (WANG Hua-yu, ZHANG Chang-bin, HE Hong, WANG Lian. Preparation of magnetic sulfonated carbon-based solid acid catalysts for the hydrolysis of cellulose[J]. Acta Physico-Chimica Sinica, 2010, 26(7): 1873-1878.)
-
[19]
[19] NAKAJIMA K, HARA M. Amorphous carbon with SO3H groups as a solid brnsted acid catalyst[J]. ACS Catal, 2012, 2(7): 1296-1304.
-
[20]
[20] YAMAGUCHI D, HARA M. Synthesis and acid catalysis of cellulose-based solid acid[J]. Solid State Sci, 2010, 12: 1029-1034.
-
[21]
[21] FU Z W, WAN H, CUI Q. Hydrolysis of carboxylic acid esters catalyzed by a carbon-based solid acid[J]. React Kinet Mech Cat, 2011, 104(2): 313-321.
-
[22]
[22] NILOOFAR T, DAVOODNIA A. Carbon-based solid acid as an efficient and reusable catalyst for one-pot synthesis of tetrasubstituted imidazoles under solvent-free conditions[J]. Chinese Journal of Chemistry, 2011, 29(1): 203-206.
-
[23]
[23] SHU Q, GAO J X, LIAO Y H. Reaction kinetics of biodiesel synthesis from waste oil using a carbon-based solid acid catalyst[J]. Chinese Journal of Chemical Engineering, 2011, 19(1): 163-168.
-
[24]
[24] LIANG X Z, ZENG M F, QI C Z. One-step synthesis of carbon functionalized with sulfonic acid groups using hydrothermal carbonization[J]. Carbon, 2010, 48(6): 1844-1848.
-
[25]
[25] TAKAGAKI A, TODA M, OKAMURA M, KONDO J N, HAYASHI S, DOMEN K, HARA M. Esterification of higher fatty acids by a novel strong solid acid[J]. Catal Today, 2006, 116(2): 157-161.
-
[26]
[26] SUGANUMA S, NAKAJIMA K, KITANO M, HAYASHI S, HARA M. sp3-linked amorphous carbon with sulfonic acid groups as a heterogeneous acid catalyst[J]. ChemSusChem, 2012, 5(9): 1841-1846.
-
[27]
[27] LIANG X Z, XIAO H Q, SHEN Y M, QI C Z. One-step synthesis of novel sulfuric acid groups' functionalized carbon via hydrothermal carbonization[J]. Mater Lett, 2010, 64(8): 953-955.
-
[28]
[28] SUGANUMA S, NAKAJIMA K, KITANO M, KATO H, TAMURA A, KONDO H, YANAGAWA S, HAYASHI S, HARA M. SO3H-bearing mesoporous carbon with highly selective catalysis[J]. Micropor Mesopor Mater, 2011, 143(2/3): 443-450.
-
[29]
[29] 申曙光, 王涛, 秦海峰, 代光, 李焕梅. 不同碳源制备碳基固体酸及其在水解纤维素中的应用[J]. 功能材料, 2012, 12(43): 1598-1601. (SHEN Shu-guang, WANG Tao, QIN Hai-feng, DAI Guang, LI Huan-mei. Synthesis and properties in hydrolytic cellulose of carbon-based solid acids prepared from different carbon sources[J]. Functional materials, 2012, 12(43): 1598-1601.)
-
[30]
[30] LIU W Y, LIU N, ZHENG R Y, LI B, ZHANG X, LIANG S J, WANG Z. Coaled carbon-based solid acid: A new and efficient catalyst for click synthesis of 3, 4-dihydropyrimidin-2(1H)-ones under solvent-free conditions[J]. Adv Mater Res, 2013, 634: 504-507.
-
[31]
[31] YUCHUAN L, HUBER G W. The critical role of heterogeneous catalysis in lignocellulosic biomass conversion[J]. Energy Environ Sci, 2009, 2: 68-80.
-
[32]
[32] GUO H X, QI X H, LI L Y, RICHARD L. SMITH JR. Hydrolysis of cellulose over functionalized glucose-derived carbon catalyst in ionic liquid[J]. Bioresour Technol, 2012, 116: 355-359.
-
[33]
[33] ARRIGONE G M, HILTON M. Theory and practice in using fourier transform infrared spectroscopy to detect hydrocarbons in emissions from gas turbine engines[J]. Fuel, 2005, 84(9): 1052-1058.
-
[34]
[34] JOEL R G, FUJIWARA H, SHARP C R, LOGUSCH W E. Characterization of covalent protein conjugates using solid-state carbon-13 NMR spectroscopy[J]. Biochemistry, 1991, 30(29): 7057-7062.
-
[35]
[35] CHUANG I S, MACIEL G E. 13C NMR Investigation of the stability of a resol-type phenol-formaldehyde resin toward formalin, toward base, and toward nonoxidizing or oxidizing acid[J]. Macromolecules, 1991, 24(5): 1025-1032.
-
[36]
[36] NEGRE M, GENNARI M, CRECCHIO C. Effect of ethylene oxide sterilization on soil organic matter, spectroscopic analysis and adsorption of acifluorfen[J]. Soil Sci, 1995, 159(3): 199-206.
-
[37]
[37] HAMAGUCHI M, NISHIZAWA T. Quantitative analysis of aromatic carbon types in pitch by fused-state 13C NMR spectroscopy[J]. Fuel, 1992, 71(7): 747-750.
-
[1]
-
-
-
[1]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[2]
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
-
[3]
Mingxin LU , Liyang ZHOU , Xiaoyu XU , Xiaoying FENG , Hui WANG , Bin YAN , Jie XU , Chao CHEN , Hui MEI , Feng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206
-
[4]
Lisha LEI , Wei YONG , Yiting CHENG , Yibo WANG , Wenchao HUANG , Junhuan ZHAO , Zhongjie ZHAI , Yangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202
-
[5]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[6]
Zhenhua Wang , Haoyang Feng , Xiaoyang Shao , Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007
-
[7]
Yingxian Wang , Tianye Su , Limiao Shen , Jinping Gao , Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015
-
[8]
Honghong Zhang , Zhen Wei , Derek Hao , Lin Jing , Yuxi Liu , Hongxing Dai , Weiqin Wei , Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073
-
[9]
Yukun Chang , Haoqin Huang , Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095
-
[10]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[11]
Wanchun Zhu , Yongmei Liu , Li Wang , Yunshan Bai , Shu'e Song , Xiaokui Wang , Zhongyun Wu , Hong Yuan , Yunchao Li , Fuping Tian , Yuan Chun , Jianrong Zhang , Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028
-
[12]
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
-
[13]
Linjie ZHU , Xufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207
-
[14]
Linhan Tian , Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056
-
[15]
Pengzi Wang , Wenjing Xiao , Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090
-
[16]
Zijian Zhao , Yanxin Shi , Shicheng Li , Wenhong Ruan , Fang Zhu , Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094
-
[17]
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
-
[18]
Yongpo Zhang , Xinfeng Li , Yafei Song , Mengyao Sun , Congcong Yin , Chunyan Gao , Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092
-
[19]
Jinfeng Chu , Yicheng Wang , Ji Qi , Yulin Liu , Yan Li , Lan Jin , Lei He , Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105
-
[20]
Jiaqi AN , Yunle LIU , Jianxuan SHANG , Yan GUO , Ce LIU , Fanlong ZENG , Anyang LI , Wenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(422)
- HTML views(29)