Citation: LI Run-dong, LI Bing-shuo, YANG Tian-hua, XIE Ying-hui. Liquefaction of rice stalk in sub-and supercritical ethanol[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(12): 1459-1465. shu

Liquefaction of rice stalk in sub-and supercritical ethanol

  • Corresponding author: LI Run-dong, 
  • Received Date: 23 July 2013
    Available Online: 15 October 2013

    Fund Project:

  • Rice stalk (RS) was liquefied in ethanol under sub-and supercritical conditions in a batch autoclave; the influences of reaction temperature, RS/ethanol ratio and residence time on the liquefaction behavior were investigated. Under the optimized conditions, i.e. 325 ℃, a RS/ethanol ratio of 1/10 (g/mL), and a residence time of 60 min, the RS conversion and oil yield reach 78.32% and 55.03%, respectively. The GC/MS analysis results illustrate that the dominant components of the bio-oil are phenols and esters, which account for about 50% of the bio-oil product. The bio-oil product obtained exhibits a high heat value (HHV) of 28.95 MJ/kg, a kinematic viscosity of 5.63 mm2/s, and a water content of 2.2%.
  • 加载中
    1. [1]

      [1] 赵炜. 农作物秸秆在亚/超临界醇中的液化[D]. 徐州: 中国矿业大学, 2009. (ZHAO Wei. Liquefaction of crop stalks in sub and supercritical alcohols[D]. Xuzhou: China University of Mining and Technology, 2009.)

    2. [2]

      [2] YANG Y F, FENG C P, INAMORIB Y, MAEKAWAC T. Analysis of energy conversion characteristics in liquefaction of algae[J]. Resour Conserv Recycl, 2004, 43(1), 21-33.

    3. [3]

      [3] QIAN Y J, ZUO C J, TAN J, HE J H. Structural analysis of bio-oils from sub-and supercritical water liquefaction of woody biomass[J]. Energy, 2007, 32(3): 196-202.

    4. [4]

      [4] JADE C, PATTARAPAN P. Bio-oil from hydro-liquefaction of bagasse in supercritical ethanol[J]. Energy Fuels, 2010, 24(3): 2071-2077.

    5. [5]

      [5] JAVAID A, NOR AISHAH SAIDINA A. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass[J]. Renew Sust Energy Rev, 2011, 15(3): 1615-1624.

    6. [6]

      [6] 刘华敏, 解新安, 丁年平, 刘焕彬, 黄璐怡. 亚/超临界乙醇液化玉米秸秆反应路径与机理[J]. 农业工程学报, 2010, 26(6): 277-282. (LIU Hua-min, XIE Xin-an, DING Nian-ping, LIU Huan-bin, HUANG Lu-yi. Liquefaction reaction pathway and mechanism of cornstalk in sub-and super-critical ethanol[J]. Transactions of the CSAE, 2010, 26(6): 277-282.)

    7. [7]

      [7] 郑朝阳, 解新安, 陶红秀, 郑璐丝, 李雁. 亚/超临界乙醇液化秸秆纤维素解聚反应研究与机理初探[J]. 燃料化学学报, 2012, 40(5): 526-532. (ZHENG Chao-yang, XIE Xin-an, TAO Hong-xiu, ZHENG Lu-si, LI Yan. Depolymerization of stalk cellulose during its liquefaction in sub-and supercritical ethanol[J]. Journal of Fuel Chemistry and Technology, 2012, 40(5): 526-532.)

    8. [8]

      [8] ZHOU D, ZHANG S C, FU H B, CHEN J M. Liquefaction of macroalgae enteromorpha prolifera in sub-/supercritical alcohols: Direct production of ester compounds[J]. Energy Fuels, 2012, 26(4): 2342-2351.

    9. [9]

      [9] 颜涌捷, 任铮伟. 纤维素连续催化水解研究[J]. 太阳能学报, 1999, 20(1): 55-58. (YAN Yong-jie, REN Zheng-wei. Continuous catalytic hydrolysis of cellulose[J]. Acta Energiae Solaris Sinica, 1999, 20(1): 55-58.)

    10. [10]

      [10] ZHONG C L, WEI X M. A comparative experimental study on the liquefaction of wood[J]. Energy, 2004, 29(11): 1731-1741.

    11. [11]

      [11] TAO H X, XIE X A, TANG C Z, TIAN W G. Mechanism of ketones formation from cellulose liquefaction in sub-and supercritical ethanol[J]. Journal of Fuel Chemistry and Technology, 2013, 41(1): 60-66.

    12. [12]

      [12] LI H, YUAN X Z, ZENG G M, TONG J Y, XIE W. Effect of mixed solvent on the sub-and supercritical liquefaction of agricultural waste[J]. Transactions of the CSAE, 2008, 24(5): 200-203.

    13. [13]

      [13] 秦岭, 吴玉龙, 邹树平, 陈镇, 杨明德, 陈恒志. 杜氏盐藻在亚/超临界水中液化制生物油[J]. 太阳能学报, 2010, 31(9): 1079-1084. (QIN Ling, WU Yu-long, ZOU Shu-ping, CHEN Zhen, YANG Ming-de, CHEN Heng-zhi. Experimental research on direct liquefaction of microalgae in subcritical/supercritical water[J]. Acta Energiae Solaris Sinica, 2010, 31(9): 1079-1084.)

    14. [14]

      [14] ANASTASAKIS K, ROSS A B. Hydrothermal liquefaction of the brown macro-alga laminaria saccharina: Effect of reaction conditions on product distribution and composition[J]. Bioresour Technol, 2011, 102(7): 4876-4883.

  • 加载中
    1. [1]

      Bohao LiuXue JiangRuizhi NingHeng ZhaoYanpeng ZhangJunnan ZhangTianqing LiuDanyao QuYinhui BaoZhanchen GuoXiaoyan ZengShan GaoKun FanRunyi TaoJian JiGuangjian ZhangWeiwei Wu . Tedlar bag free: Accurate volatolomics of ⅠA stage non-small cell lung cancer come out in wash. Chinese Chemical Letters, 2025, 36(6): 110301-. doi: 10.1016/j.cclet.2024.110301

    2. [2]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    3. [3]

      Siwei Lv Tantian Tan Xinyue Li Siyan Zhang Mingyuan Zhang Minghao Li Hangshuo Guo Zhaorong Li Liangjie Dong Fengshuo Zhang Junlong Zhao . Competition of the “King of Transboundary Medicine”. University Chemistry, 2024, 39(9): 102-108. doi: 10.12461/PKU.DXHX202403034

    4. [4]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    5. [5]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    6. [6]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    7. [7]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    8. [8]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    9. [9]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    10. [10]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    11. [11]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    12. [12]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    13. [13]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    14. [14]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    15. [15]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    16. [16]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    17. [17]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    18. [18]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    19. [19]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    20. [20]

      Xinyue HanYunhan YangJiayin LuYuxiang LinDongxue ZhangLing LinLiang Qiao . Efficient serum lipids profiling by TiO2-dopamin-assisted MALDI-TOF MS for breast cancer detection. Chinese Chemical Letters, 2025, 36(5): 110183-. doi: 10.1016/j.cclet.2024.110183

Metrics
  • PDF Downloads(0)
  • Abstract views(602)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return