Citation: YIN Li-bao, GAO Zheng-yang, XU Qi-sheng, ZHENG Shuang-qing, ZHONG Jun, CHEN Chuan-min. Analysis of species and thermal stability of particulate-bound mercury in coal-fired boiler[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(12): 1451-1458. shu

Analysis of species and thermal stability of particulate-bound mercury in coal-fired boiler

  • Corresponding author: YIN Li-bao, 
  • Received Date: 19 March 2013
    Available Online: 3 June 2013

    Fund Project:

  • The fly ashes from a 320 MW unit boiler with three excess air conditions were sieved to 4 sizes. The carbon contents of the ashes were measured, and the ashes were heated at two heating modes. The Hg contents of the ashes were analyzed using LUMEX Mercury Analyzer, and the Hg species in the ashes was determined according to the Hg release characteristics at different heating temperatures. The activation energies for Hg release were calculated. The results indicate that the Hg concentration in the ashes increases with the decreasing of ash size. Increasing the excess air leads to the decrease of carbon in ash, while the influence of excess air on the Hg content varies with ash size. Hg compounds in fly ash are mainly HgCl2 and HgS. The rising excess air results in a decrease of HgCl2 proportion and an increase of HgS proportion, while the proportion of HgO and HgSO4 keeps almost constant. Residence time is a key factor to influence the formation of particulate Hg. The increasing of excess air and particle size leads to an increase of activation energy for Hg release.
  • 加载中
    1. [1]

      [1] Environmental Protection Agency, Office of Quality Planning and Stabdards and Office of Research and Development. Mercury study report to congress; EPA452r/R-97-003[R]. Washington, DC: U. S. 1997.

    2. [2]

      [2] MASON R P, FITZGERALD W F, MOREL F M M. The biogeochemical cycling of elemental mercury: anthropogenic influences[J]. Geochim Cosmochim Ac, 1994, 58(15): 3191-3198.

    3. [3]

      [3] PARK K S, SEO Y C, LEE S J, LEE J H. Emission and speciation of mercury from various combustion sources[J]. Powder Technol, 2008, 180(1/2): 151-156.

    4. [4]

      [4] ZHONG L P, CAO Y, LI W Y, PAN W P, XIE K C. Effect of the existing air pollutant control devices on mercury emission in coal-fired power plants[J]. Journal of Fuel Chemistry and Technology, 2010, 38(6): 641-646.

    5. [5]

      [5] WANG J, WANG W, XU W, WANG X, ZHAO S. Mercury removals by existing pollutants control devices of four coal-fired power plants in China[J]. J Environ Sci-China, 2011, 23(11): 1839-1844.

    6. [6]

      [6] CHEN L, DUAN Y F, ZHUO Y Q, YANG L G, ZHANG L, YANG X H, YAO Q, JIANG Y M, XU X C. Mercury transformation across particulate control devices in six power plants of China: The co-effect of chlorine and ash composition[J]. Fuel, 2007, 86(4): 603-610.

    7. [7]

      [7] SLIGER R N, KRAMLICH J C, MARINOV N M. Towards the development of a chemical kinetic model for the homogeneous oxidation of mercury by chlorine species[J]. Fuel Process Technol, 2000, 65: 423-424.

    8. [8]

      [8] 王帅, 高继慧, 吴燕燕, 汪细河, 吴少华. 燃煤烟气NO/SO2 对Cl/Cl2 形成过程的影响机制[J]. 中国电机工程学报, 2010, 30(20): 33-38. (WANG Shuai, GAO Ji-hui, WU Yan-yan, WANG xi-he, WU shao-hua. Effect mechanism of NO/SO2 on Cl/Cl2 formation in coal-fired flue gas[J]. Proceedings of the CSEE, 2010, 30(20): 33-38.)

    9. [9]

      [9] SABLE S P, JONG W, SPLIETHOFF H. Combined Homo-and heterogeneous model for mercury speciation in pulverized fuel combustion flue gases[J]. Energy Fuels, 2008, 22(1): 321-330.

    10. [10]

      [10] 杨立国, 段钰锋, 杨祥花, 江贻满, 王运军, 赵长遂. 燃煤电厂汞排放特性实验研究[J]. 东南大学学报(自然科学版), 2007, 37(5): 817-821. (YANG Li-guo, DUAN Yu-feng, YANG Xiang-hua, JIANG Yi-man, WANG Yun-jun, ZHAO Chang-sui. Mercury emission characteristics from coal-fired power plants[J]. Journal of Southeast University(Natural Science Edition), 2007, 37(5): 817-821.)

    11. [11]

      [11] 王起超, 沈文国, 麻壮伟. 中国燃煤汞排放量估算[J]. 中国环境科学, 1999, 19(4): 318-321. (WANG Qi-chao, SHEN Wen-guo, MA Zhuang-wei. Theestimation of mercury emission from coal combustion in China[J]. China Environmental Science, 1999, 19(4): 318-321(in Chinese).)

    12. [12]

      [12] 姚多喜, 支霞臣, 郑宝山. 煤燃烧过程中5种微量元素的迁移和富集[J]. 环境化学, 2004, 23(1): 31-37. (YAO Duo-xi, ZHI Xia-chen, ZHENG Bao-shan. The transformation and concentration of 5 trace elements during coal combustion[J]. Environmental Chemistry, 2004, 23(1): 31-37.)

    13. [13]

      [13] GALE T K, LANI B W, OFFEN G R. Mechanisms governing the fate of mercury in coal-fired power systems[J]. Fuel Process Technol, 2008, 89(2): 139-151.

    14. [14]

      [14] ANTONIA L-A M, MERCEDES D-S, ROSA M-T M. Mercury retention by fly ashes from coal combustion: Influence of the unburned carbon content[J]. Ind Eng Chem Res, 2007, 46(3): 927-931.

    15. [15]

      [15] LOPEZ-ANTON M A, YANG Y, PERRY R, MAROTO-VALER M M. Analysis of mercury species present during coal combusti on by thermal desorption[J]. Fuel, 2010, 89(3): 629-634.

    16. [16]

      [16] VIDIC R D, MCLAUGHLIN J B. Uptake of elemental mercury vapors by activated carbons[J]. J Air Waste Manage, 1996, 46(3): 241-250.

    17. [17]

      [17] VIDIC R D, CHANG M T, THURNAU R C. Kinetics of vapor-phase mercury uptake by virgin and sulfur-impregnated activated carbons[J]. J Air Waste Manage, 1998, 48(3): 247-255.

  • 加载中
    1. [1]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    2. [2]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    3. [3]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    4. [4]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    5. [5]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    6. [6]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    7. [7]

      Zhaohu Li Weidong Wang Yuhao Liu Mingzhe Han Lingling Wei Huan Jiao . Research on the Safety Management and Disposal of Chemical Laboratory Waste. University Chemistry, 2024, 39(10): 128-136. doi: 10.3866/PKU.DXHX202312090

    8. [8]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    9. [9]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    10. [10]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    11. [11]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    12. [12]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    13. [13]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    14. [14]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

    15. [15]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    16. [16]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    17. [17]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086

    18. [18]

      Zhonghan Xu Yuejia Li Kin Shing Chan . 碳中和新旅程. University Chemistry, 2025, 40(6): 167-171. doi: 10.12461/PKU.DXHX202407075

    19. [19]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    20. [20]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

Metrics
  • PDF Downloads(0)
  • Abstract views(363)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return