Citation: CHEN Dong-lin, DU Yang, CAI Yang, ZOU Chan, LIU Huan. Slagging characteristic analysis of coal ash on refractory plates during combustion[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(12): 1445-1450. shu

Slagging characteristic analysis of coal ash on refractory plates during combustion

  • Corresponding author: CHEN Dong-lin, 
  • Received Date: 28 March 2013
    Available Online: 20 May 2013

  • Two pulverized coals with different slagging tendencies were combusted in a pulverized coal boiler in which three kinds of refractory plates were arranged uniformly. After combustion, the slagging behavior of coal ash on the refractory plates was observed. In order to examine the degree of corrosion by fly ash, the cross-sectional of refractory plates were investigated by energy spectrum analysis. The results show that with the rise of temperature in the furnace, the slagging degree on the surface of refractory plates and the corrosion degree increase. When the temperature in the furnace is higher than the melting temperature of fly ash, the slagging degree on the surface of refractory plates increases sharply. In industrial boilers, the surface temperature of refractory plates lower than the fly ash melting temperature can effectively reduce the possibility of surface slagging. In addition, compared with the jade texture refractory plates, the silicon carbide refractory plate has superior anti-slagging properties.
  • 加载中
    1. [1]

      [1] CHEN D L, ZHENG C G. Quasi-constant temperature combustion for improving overall performance of a coal-fired boiler[J]. Combustion Flame, 2003, 134(1/2): 81-92.

    2. [2]

      [2] 谭旦辉, 陈冬林, 张英才.煤粉锅炉卫燃带的数值模拟[J]. 长沙理工大学学报: 自然科学版, 2011, 8(3): 61-65. (TAN Dan-hui, CHEN Dong-lin, ZHANG Ying-cai. Numerical simulation on the heat-insulating refractory of pulverized coal boiler[J]. Journal of Changsha University of Science and Technology: Natural Science, 2011, 8(3): 61-65.)

    3. [3]

      [3] 陈冬林, 陈彦菲, 鄢晓忠, 叶昌, 裴晓冲.环境气氛对煤灰在Al2O3-Cr2O3-ZrO2材料上结渣的影响[J]. 耐火材料, 2008, 42(5): 368-371. (CHEN Dong-lin, CHEN Yan-fei, YAN Xiao-zhong, YE Chang, PEI Xiao-chong. Effect of coal ash slagging on Al2O3-Cr2O3-ZrO2 refractories in different atmospheres[J]. Refractories, 2008, 42(5): 368-371.)

    4. [4]

      [4] 袁颖, 相大光, 姚伟.大型锅炉炉膛结渣的预防[J].中国电力, 1994, (7): 2-7. (YUAN Ying, XIANG Da-guang, YAO Wei. The prevention of large-scale boiler furnace slagging[J]. China Electric Power, 1994, (7): 2-7.)

    5. [5]

      [5] CHEN F C, BERNARD B A, WILLIANM E L. Prediction of the effect of additives on slag resistance of Al2O3-SiO2-C bond phase in air[J]. Calphad, 2003, 27(1): 115-125.

    6. [6]

      [6] 周俊虎, 赵晓辉, 刘建中, 杨卫娟, 黄镇宇, 岑可法. 锅炉内卫燃带上高熔点灰渣沉积机理分析[J].中国电机工程学报, 2008, 28(14): 20-26. (ZHOU Jun-hu, ZHAO Xiao-hui, LIU Jian-zhong, YANG Wei-juan, HUAN Zhen-yu, CEN Ke-fa. Analysis on deposition mechanism of ash with high ash fusion temperatures on the heat-insulation layer in boiler[J]. Proceedings of the CSEE, 2008, 28(14): 20-26.)

    7. [7]

      [7] 何金桥, 鄢晓忠, 陈冬林. 燃煤锅炉碳化硅质卫燃带表面结渣行为[J].动力工程学报, 2011, 31(9): 659-663. (HE Jin-qiao, YAN Xiao-zhong, CHEN Dong-lin. Slagging behavior on surface of carborundum-based refractory liner in a coal-fired boiler[J]. Journal of Chinese Society of Power Engineering, 2011, 31(9): 659-663.)

    8. [8]

      [8] TEN BRINK H M, SMART J P, VLEESKENS J M, WILLIAMSON J. Flame transformations and burner slagging in a 2.5 MW furnace firing pulverized coal: 1. Flame transformations[J]. Fuel, 1994, 73(11): 1706-1711.

    9. [9]

      [9] TEN BRINK H M, SMART J P, VLEESKENS J M, WILLIAMSON J. Flame transformationsand burner slagging in a 2.5 MW furnace firing pulverized coal: 2. Slagging[J]. Fuel, 1994, 73(11): 1712-1717.

    10. [10]

      [10] WELLS J, RILEY G, WILLIAMSON J. Interactions between coal-ash and burner quarls, Part 2: Resistance of different refractory materials to slag attack in a combustion test facility[J]. Fuel, 2003, 82(15/16/17): 1867-1873.

    11. [11]

      [11] 文孝强, 徐志明, 孙灵芳. 基于RBF网络的燃煤锅炉结渣特性[J]. 煤炭学报, 2010, 35(增刊1): 218-222. (WEN Xiao-qiang, Xu Zhi-ming, Sun Ling-fan. The slagging characteristics of coal-fired boilers based on RBF neural network[J]. Journal of China Coal Society, 2010, 35(s1): 218-222.)

    12. [12]

      [12] STEENARI B M, LINDQVIST O, LANGER V. Ash sintering and deposit formation in PFBC[J]. Fuel, 1998, 77(5): 407-417.

    13. [13]

      [13] 梁志刚. 300 MW机组锅炉燃烧系统改进优化[J]. 科学之友, 2012, (2): 13-15. (LIANG Zhi-gang. 300 MW unit boiler combustion system improvements optimization[J]. Friend of Science Amateurs, 2012, (2): 13-15.)

    14. [14]

      [14] 黄贵臣. 600 MW "W"火焰锅炉结焦、积渣问题研究[J]. 聊城大学学报: 自然科学版, 2009, 22(4): 58-62. (HUANG Gui-chen. 600 MW boiler of "W" flame coked and deposition of slag research[J]. Journal of Liaocheng University: Natural Science, 2009, 22(4): 58-62.)

    15. [15]

      [15] 何金桥, 陈冬林, 鄢晓忠. 低碱酸比煤灰在碳化硅质耐火板上的煅烧结渣特性[J]. 煤炭学报, 2011, 36(6): 1022-1026. (HE Jin-qiao, CHEN Dong-lin, YAN Xiao-zhong. Slagging characteristics of low alkailine-aild ratio coal ash on carborundumbased refractory liner under high temperature calcination[J]. Journal of China Coal, 2011, 36(6): 1022-1026.)

  • 加载中
    1. [1]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    2. [2]

      Shuyong Zhang Yaxian Zhu Wenqing Zhang Yuzhi Wang Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026

    3. [3]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    4. [4]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    5. [5]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    6. [6]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    7. [7]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    8. [8]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    9. [9]

      Haiyu Zhu Zhuoqun Wen Wen Xiong Xingzhan Wei Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078

    10. [10]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    11. [11]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    12. [12]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    13. [13]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    14. [14]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    15. [15]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    16. [16]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    17. [17]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    18. [18]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    19. [19]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    20. [20]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

Metrics
  • PDF Downloads(0)
  • Abstract views(1211)
  • HTML views(138)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return