Citation: LÜ Dong-mei, YU Chi-wei, BAI Zong-qing, BAI Jin, LI Wen. Slurryability of direct coal liquefaction residue-water slurry[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(12): 1437-1444. shu

Slurryability of direct coal liquefaction residue-water slurry

  • Corresponding author: YU Chi-wei, 
  • Received Date: 11 June 2013
    Available Online: 26 August 2013

    Fund Project:

  • In this work, the slurryability of direct coal liquefaction residue (DCLR) was systematically studied, and the effects of particle size distribution (PSD), stirring time, dosage and types of dispersant on the quality of direct coal liquefaction residue-water slurries (DCLRWS) was investigated. The results show that the dispersancy of naphthalenesulfonate formaldehyde (NSF) is much better than that of sodium lignosulfonate (SL), while the rheology of DCLRWS dispersed by NSF is poorer, which is mainly related to chemical characteristics of SL and NSF and interaction between dispersant with particles. Based on the experiments, the optimum conditions for preparing DCLRWS are determined, as follows: particle size distribution of Alfred model (d280~154 μm, 14%, d154~74 μm, 16%, d<74 μm, 70%), stirring strength, 3 000 r/min; stirring time, 20 min; the dosage of NSF, 1.0%. Under the optimal experimental condition, the maximum concentration of DCLRWS is up to 73.5% and 71.0% by using the NSF and SL as dispersant, respectively.
  • 加载中
    1. [1]

      [1] 舒歌平, 史士东, 李克健. 煤炭液化技术[M]. 北京: 煤炭工业出版社, 2003: 179. (SHU Ge-ping, SHI Shi-dong, LI Ke-jian. Coal liquefaction technology[M]. Beijing: China Coal Industry Publishing House, 2003: 179.)

    2. [2]

      [2] 史士东. 煤加氢液化工程学基础[M]. 北京: 化学工业出版社, 2012: 398. (SHI Shi-dong. Engineering fundamental of direct coal liquefaction[M]. Beijing: Chemical Industry Press, 2012: 398.)

    3. [3]

      [3] 楚希杰. 神华煤直接液化残渣热解和气化反应性基础研究[D]. 太原: 中国科学院山西煤炭化学研究所, 2008. (CHU Xi-jie. Pyrolysis and gasification characteristic of Shenhua coal direct liquefaction residue[D]. Taiyuan: Institute of Coal Chemistry, University of Chinese Academy of Sciences, 2008.)

    4. [4]

      [4] ZHU J F, ZHANG G H, LI J G, ZHAO F. Synthesis, adsorption and dispersion of a dispersant based on starch for coal-water slurry[J]. Colloid Surface A, 2013, 422: 165-171.

    5. [5]

      [5] KAUSHAL K T, SIBENDRA K B, KUMARESH C B, SOMNATH B, KAMLESH K M. High-concentration coal-water slurry from Indian coals using newly developed additives[J]. Fuel Process Technol, 2003, 85(1): 31-42.

    6. [6]

      [6] DEBADUTTA D, UMA D, JIBARDHAN M, PRAMILA K M. Improving stability of concentrated coal-water slurry using mixture of a natural and synthetic surfactants[J]. Fuel Process Technol, 2013, 113: 41-51.

    7. [7]

      [7] RUIKUN W, JIANZHONG L, FUYAN G, JUNHU Z, KEFA C. The slurrying properties of slurry fuels made of petroleum coke and petrochemical sludge[J]. Fuel Process Technol, 2012, 104: 57-66.

    8. [8]

      [8] LI W D, LI W F, LIU H F. Effects of sewage sludge on rheological characteristics of coal-water slurry[J]. Fuel, 2010, 89(9): 2505-2510.

    9. [9]

      [9] 龚凯峰, 刘鑫, 孙晔, 王辅臣. 一种新型水煤浆气化原料——水渣浆[J]. 上海煤气, 2009, (3): 3-6. (GONG Kai-feng, LI Xin, SUN Hua, WANG Fu-chen. A new type material of coal-water slurry gasification-coal liquefaction residue water slurry[J]. Shanghai Gas, 2009, (3): 3-6.)

    10. [10]

      [10] 罗进成, 郑化安, 门长贵, 袁善禄, 谢馨馨. 煤液化残渣制浆研究[J]. 现代化工, 2012, 32(4): 76-79. (LUO Jin-cheng, ZHENG Hua-an, MEN Chang-gui, YUAN Shan-lu, XIE Xin-xin. Study on the pulping of coal liquefaction residues[J]. Modern Chemical Industry, 2012, 32(4): 76-79.)

    11. [11]

      [11] 杨东杰, 郭闻源, 李旭昭, 王玥, 邱学青. 不同相对分子质量对接枝磺化木质素水煤浆分散剂吸附分散性能的影响[J]. 燃料化学学报, 2013, 41(1): 20-25. (YANG Dong-jie, GUO Wen-yuan, LI Xu-zhao, WANG Yue, QIU Xue-qing. Effects of molecular weight of grafted lignin on its dispersion and adsorption properties as a dispersant for coal water slurries[J]. Journal of Fuel Chemistry and Technology, 2013, 41(1): 20-25.)

    12. [12]

      [12] 尉迟唯, 李保庆, 李文, 陈皓侃. 中国不同变质程度煤制备水煤浆性质研究[J]. 燃料化学学报, 2005, 33(2): 155-160. (YU Chi-wei, LI Bao-qing, LI Wen, CHEN Hao-kan. Study on the properties of coal water slurry prepared with different coal ranks[J]. Journal of Fuel Chemistry and Technology, 2005, 33(2): 155-160.)

    13. [13]

      [13] 叶菁. 粉体科学与工程基础[M]. 北京: 科学出版社, 2009: 43. (YE Jing. Fundamentals of powder science and technology[M]. Beijing: Science press, 2009: 43.)

    14. [14]

      [14] YAVUZ R, KUC S, UKBAYRAK. An investigation of some factors affecting the dispersant adsorption of lignite[J]. Powder Technol, 2001, 119(2/3): 89-94.

    15. [15]

      [15] DINÇER H, BOYLU F, SIRKECI A A and ATESOK G. The effect of chemicals on the viscosity and stability of coal water slurries[J]. Int J Miner Process, 2003, 70(1/4): 41-51.

    16. [16]

      [16] 邹立壮, 朱书全, 王晓玲, 郭相坤, 崔广文. 不同水煤浆分散剂与煤之间的相互作用规律研究: X分散剂在煤粒表面上的吸附作用特征[J]. 燃料化学学报, 2006, 34(1): 10-14. (ZOU Li-zhuang, ZHU Shu-quan, WANG Xiao-ling, GUO Xiang-kun, CUI Guang-wen. Interaction between different CWS dispersants and coal: X adsorptive characteristics of dispersant on coal surface[J]. Journal of Fuel Chemistry and Technology, 2006, 34(1): 10-14.)

    17. [17]

      [17] FAN Y L, HU H Q, JIN L J, ZHU S W, ZHANG Q M. Static stability and rheological behavior of lignite char-water mixture[J]. Fuel, 2013, 104: 7-13.

    18. [18]

      [18] 谷小会. 神华煤直接液化残渣结构特性的探讨[D]. 北京: 煤炭科学研究总院北京煤化工分院, 2005. (GU Xiao-hui. Study on the structure characters of Shenhua coal direct liquefaction residue[D]. Beijing: Beijing research institute of coal chemistry, 2005.)

    19. [19]

      [19] 尉迟唯, 李保庆, 李文, 陈皓侃. 煤质因素对水煤浆性质的影响[J]. 燃料化学学报, 2007, 35(2): 146-154. (YUCHI Wei, LI Bao-qing, LI Wen, CHEN Hao-kan. Analysis of coal characteristics on the properties of coal water slurry preparation with different coal ranks[J]. Journal of Fuel Chemistry and Technology, 2007, 35(2): 146-154.)

  • 加载中
    1. [1]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    2. [2]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    5. [5]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    6. [6]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    7. [7]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    8. [8]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    9. [9]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    10. [10]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    11. [11]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    12. [12]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    13. [13]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    14. [14]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    15. [15]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    16. [16]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    17. [17]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    18. [18]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    19. [19]

      Yanling Luo Xuejie Qi Rui Shen Xuling Peng Xiaoyan Han . Design and Implementation of Ideological and Political Education in the Physical Chemistry Course at Traditional Chinese Medicine Universities: A Case Study of the Phase Diagram of Water. University Chemistry, 2024, 39(11): 9-14. doi: 10.3866/PKU.DXHX202402003

    20. [20]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

Metrics
  • PDF Downloads(0)
  • Abstract views(498)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return