Citation:
PAN Chun-xiu, WEI Xian-yong, LI Han-qing, SHUI Heng-fu, WANG Zhi-cai, ZHU Wan-wan, ZHAO Zhi-jun, ZONG Zhi-min. H2O2 oxidation of Xianfeng lignite and its thermal extraction residue[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(12): 1415-1421.
-
Thermal extraction of Xianfeng lignite (XL) with 1-methylnaphthalene (1-MN) was carried out at 320 ℃, and the H2O2 oxidation of the thermal extraction residue (TR) was compared with that of XL raw coal. The thermal extract (TE), TR and the oxidized residues were characterized by element analysis and FT-IR. The aqueous products from oxidation reaction were esterified and analyzed by GC/MS. The result shows that the yield of TR from XL in 1-MN is 81.01%. It indicates that XL is mainly composed of macromolecular structure cross-linked by covalent bond, with less low molecular compounds associated by non-covalent bond interactions. The TE is mainly composed of aliphatic hydrocarbons, carboxylic acid esters with less aromatic structures and hydroxyl group. GC/MS results suggest that the water-soluble products contained highest content of α, ω-dicarboxylic acids, especially malonic acid and succinic acid, with much amount of benzoic acid and tricarboxylic acids. The low molecular weight compounds associated in the macromolecular structure of raw coal can be easily oxidized under the conditions and more species of oxidation products are obtained. Compared with the structure of raw coal, the structure of TR is more regular. The oxidation of TR mainly occurs on the macromolecular structure cross-linked by covalent bond, resulting in the higher yield of oxidized residue and less species of water-soluble products from TR. The high yields of malonic acid and succinic acid in the water-soluble products suggest that -CH2-and -CH2-CH2-are the main cross-linking bonds in the macromolecular network structure of XL.
-
Keywords:
- lignite,
- thermal extraction,
- oxidation,
- GC/MS
-
-
-
[1]
[1] YOSHIDA T, LI C, TAKANOHASHI T, MATSUMURA A, SATO S, SAITO I. Effect of extraction condition on "hypercoal" production (2): Effect of polar solvents under hot filtration[J]. Fuel Process Technol, 2004, 86(1): 61-72.
-
[2]
[2] MIURA K, NAKAGAWA H, ASHIDA R, IHARA T. Production of clean fuels by solvent skimming of coal at around 350℃[J]. Fuel, 2004, 83(6): 733-738.
-
[3]
[3] ASHIDA R, NAKAGAWA K, OGA M, NAKAGAWA H, MIURA K. Fractionation of coal by use of high temperature solvent extraction technique and characterization of the fractions[J]. Fuel, 2008, 87(4/5): 576-582.
-
[4]
[4] TAKANOHASHI T, SHISHIDO T, KAWASHIMA H, SAITO I. Characterisation of Hypercoals from coals of various ranks[J]. Fuel, 2008, 87(4/5): 592-598.
-
[5]
[5] MIURA K, SHIMADA M, MAE K, SOCK H Y. Extraction of coal below 350℃ in flowing non-polar solvent[J]. Fuel, 2001, 80(11): 1573-1582.
-
[6]
[6] ASHIDA R, MORIMOTO M, MAKINO Y, UMEMOTO S, NAKAGAWA H, MIURA K, SAITO K, KATO K. Fractionation of brown coal by sequential high temperature solvent extraction[J]. Fuel, 2009, 88(8): 1485-1490.
-
[7]
[7] 王知彩, 李良, 水恒福, 雷智平, 任世彪, 康士刚, 潘春秀. 先锋褐煤热溶及热溶物红外光谱表征[J]. 燃料化学学报, 2011, 39(6): 401-406. (WANG Zhi-cai, LI Liang, SHUI Heng-fu, LEI Zhi-ping, REN Shi-biao, KANG Shi-gang, PAN Chun-xiu. High temperature thermal extraction of Xianfeng lignite and FT-IR characterization of its extracts and residues[J]. Journal of Fuel Chemistry and Technology, 2011, 39(6): 401-406.)
-
[8]
[8] 常鸿雁, 韩文煜, 张德祥, 高晋生. 煤直接液化中油煤浆热溶产物的变化[J]. 煤炭学报, 2005, 30(1): 90-94. (CHANG Hong-yan, HAN Wen-yu, ZHANG De-xiang, GAO Jin-sheng. Study on thermally dissolved product changes of coal-oilslurry during direct coal liquefaction[J]. Journal of China Coal Society, 2005, 30(1): 90-94.
-
[9]
[9] SHUI H F, ZHOU Y, LI H P, WANG Z C, LEI Z P, REN S B, PAN C X, WANG W W. Thermal dissolution of Shenfu coal in different solvents[J]. Fuel, 2013, 108: 385-390.
-
[10]
[10] 刘振学, 魏贤勇, 刘泽常. 煤的氧化反应研究进展[J]. 煤炭转化, 2000, 23(4): 7-10. (LIU Zhen-xue, WEI Xian-yong, LIU Ze-chang. Advance of coal oxidizing reaction studies[J]. Coal Conversion, 2000, 23(4): 7-10.
-
[11]
[11] MIURA K, MAE K, OKUTSU H, MIZUTANI N. Production of organic acids in high yields from brown coal through the liquid phase oxidation with H2O2 at low temperature[J]. Am Chem Soc Div Fuel Chem, 1996, 41(2): 734-738.
-
[12]
[12] MIURA K, MAE K, OKUTSU H, MIZUTANI N. New oxidative degradation method for producing fatty acids in high yields and high selectivity from low-rank coals[J]. Energy Fuels, 1996, 10(6): 1196-1201.
-
[13]
[13] MAE K, MAKI T, ARAKI J, MIURA K. Extraction of low-rank coals oxidized with hydrogen peroxide in conventionally used solvents at room temperature[J]. Energy Fuels, 1997, 11(4): 825-831.
-
[14]
[14] 冯波, 其鲁, 张敬华, 孙小嫚, 杨凡. 弱氧化环境下褐煤氧化产物的定性分析[J]. 冶金分析, 2009, 29(1): 21-24. (FENG Bo, QI Lu, ZHANG Jin-hua, SUN Xiao-man, YANG Fan. Qualitiative analysis of brown coal oxidation products in mild oxidizing atmosphere[J]. Metallurgical Analysis, 2009, 29(1): 21-24.
-
[15]
[15] 陈虹, 宗志敏, 张佳伟, 黄斌, 韩勇, 王桃霞, 魏贤勇. 温和条件下黑岱沟萃余煤的双氧水氧化产物分析[J]. 中国矿业大学学报, 2008, 37(3): 347-353. (CHEN Hong, ZONG Zhi-min, ZHANG Jia-wei, HUANG Bin, HAN Yong, WANG Tao-xia, WEI Xian-yong. Analysis of products from the oxidation of Heidaigou coal residue with H2O2 aqueous under mild condition[J]. Journal of China University of Mining & Technology, 2008, 37(3): 347-353.)
-
[16]
[16] LIU Z, LIU Z, ZONG Z, WEI X, WANG J, LEE C W. GC/MS analysis of water-soluble products from the mild oxidation of Longkou brown coal with H2O2[J]. Energy Fuels, 2003, 17(2): 424-426.
-
[17]
[17] PAN C, WEI X, SHUI H, WANG Z, GAO J, WEI C, CAO X, ZONG Z. Investigation of the macromolecular network structure of Xianfeng lignite by a new two-step depolymerization[J]. Fuel, 2013, 109: 49-53.
-
[18]
[18] ALVAREZ R, CLEMENTE C, GOMEZ-LIMON D. The influence of nitric acid oxidation of low rank coal and its impact on coal structure[J]. 2003, Fuel, 82(15/17): 2007-2015.
-
[19]
[19] DENO N C, GREIGGER B A, STROUND S G. New method for elucidating the structures of coal[J]. Fuel, 1978, 57(8): 455-459.
-
[20]
[20] HUANG Y, ZONG Z, YAO Z, ZHENG Y, MOU J, LIU G, CAO J, DING M, CAI K, WANG F, ZHAO W, XIA Z, WU L, WEI X. Ruthenium ion-catalyzed oxidation of Shenfucoal and its residues[J]. Energy Fuels, 2008, 22(3): 1799-1806.
-
[21]
[21] YAO Z, WEI X, LV J, LIU F, HUANG Y, XU J, CHEN F, HUANG Y, LI Y, LU Y, ZONG Z. Oxidation of Shenfu coal with RuO4 and NaOCl[J]. Energy Fuels, 2010, 24(3): 1801-1808.
-
[22]
[22] VERHEYEN T V, JOHNS R B. Analysis of peroxytrifluoroacetic acid oxidation products from Victorian brown coal[J]. Anal Chem, 1983, 55(9): 1564-1568.
-
[1]
-
-
-
[1]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[2]
Yu Dai , Xueting Sun , Haoyu Wu , Naizhu Li , Guoe Cheng , Xiaojin Zhang , Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052
-
[3]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[4]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[5]
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
-
[6]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[7]
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
-
[8]
Kun Li , Na Gao , Shuangyan Huan , Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068
-
[9]
Yukai Jiang , Yihan Wang , Yunkai Zhang , Yunping Wei , Ying Ma , Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033
-
[10]
Rong Tian , Yadi Yang , Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064
-
[11]
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
-
[12]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[13]
Xinyue Han , Yunhan Yang , Jiayin Lu , Yuxiang Lin , Dongxue Zhang , Ling Lin , Liang Qiao . Efficient serum lipids profiling by TiO2-dopamin-assisted MALDI-TOF MS for breast cancer detection. Chinese Chemical Letters, 2025, 36(5): 110183-. doi: 10.1016/j.cclet.2024.110183
-
[14]
Jinqi Yang , Xiaoxiang Hu , Yuanyuan Zhang , Lingyu Zhao , Chunlin Yue , Yuan Cao , Yangyang Zhang , Zhenwen Zhao . Direct observation of natural products bound to protein based on UHPLC-ESI-MS combined with molecular dynamics simulation. Chinese Chemical Letters, 2025, 36(5): 110128-. doi: 10.1016/j.cclet.2024.110128
-
[15]
Guo-Ping Yin , Ya-Juan Li , Li Zhang , Ling-Gao Zeng , Xue-Mei Liu , Chang-Hua Hu . Citrinsorbicillin A, a novel homotrimeric sorbicillinoid isolated by LC-MS-guided with cytotoxic activity from the fungus Trichoderma citrinoviride HT-9. Chinese Chemical Letters, 2024, 35(8): 109035-. doi: 10.1016/j.cclet.2023.109035
-
[16]
Pengyu Chen , Beibei Chen , Man He , Yuxi Zhou , Lei Lei , Jian Han , Bingsheng Zhou , Ligang Hu , Bin Hu . Nanoplastics and nano-ZnO facilitate Cd accumulation in zebrafish larvae via a distinct pathway: Revelation by LA-ICP-MS imaging. Chinese Chemical Letters, 2025, 36(2): 109908-. doi: 10.1016/j.cclet.2024.109908
-
[17]
Dan Zhou , Liangjin Bao , Haoqi Long , Duo Zhou , Yuwei Xu , Bo Wang , Chuanqin Xia , Liang Xian , Chengbin Zheng . Capillary electrophoresis as sample introduction system for highly sensitive and interference-free determination of 99Tc by ICP-MS. Chinese Chemical Letters, 2025, 36(4): 110093-. doi: 10.1016/j.cclet.2024.110093
-
[18]
Yahui HAN , Jinjin ZHAO , Ning REN , Jianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395
-
[19]
Wantong Zhang , Zixing Xu , Guofei Dai , Zhijian Li , Chunhui Deng . Removal of Microcystin-LR in lake water sample by hydrophilic mesoporous silica composites under high-throughput MALDI-TOF MS detection platform. Chinese Chemical Letters, 2024, 35(5): 109135-. doi: 10.1016/j.cclet.2023.109135
-
[20]
Jun-Jie Fang , Zheng Liu , Yun-Peng Xie , Xing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(749)
- HTML views(84)