Citation: HUANG Xin, ZHANG Shu, LIN Xiong-chao, WANG Yong-gang, XU Min. Deoxygenation effect on hydrophilicity changes of Shengli lignite during pressurized pyrolysis at low temperature[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(12): 1409-1414. shu

Deoxygenation effect on hydrophilicity changes of Shengli lignite during pressurized pyrolysis at low temperature

  • Corresponding author: ZHANG Shu,  WANG Yong-gang, 
  • Received Date: 14 May 2013
    Available Online: 12 September 2013

    Fund Project:

  • The effect of temperature (200~350 ℃) and pressure (0.25~8.00 MPa) on the elimination of main oxygen-containing functional groups of Shengli lignite was examined during pyrolysis in a fixed-bed reactor. Effects of the reduction of oxygen-containing functional groups on the moisture holding capacity (MHC) of coal samples were also investigated. The results showed that temperature was the key factor on the removal of carboxyl and phenolic hydroxyl from the lignite. The variation of pressure had few effects on the removal of carboxyl in coal; in contrast, phenolic hydroxyl was reduced to a minimum point at the pressure between 3.00 to 4.00 MPa. The carboxyl content in the lignite played a dominant role on the surface polarity and moisture holding capacity. The influence of specific surface area on the MHC became distinct when the carboxyl content in coal samples kept constant.
  • 加载中
    1. [1]

      [1] 韦小梅, 周敏, 刘恭欣, 杜宇. 低煤化度煤低温热改质的研究进展[J]. 能源技术与管理, 2011, (1): 119-124. (WEI Xiao-mei, ZHOU Min, LIU Gong-xin, DU Yu. Research progress of low temperature pyrolysis upgrading for low rank coal[J]. Energy Technology and Management, 2011, (1): 119-124.)

    2. [2]

      [2] 尉迟唯, 李保庆, 李文, 陈皓侃. 煤质因素对水煤浆性质的影响[J]. 燃料化学学报, 2007, 35(2): 146-154. (YUCHI wei, LI Bao-qing, LI Wen, CHEN Hao-kan. Analysis of coal characteristics on the properties of coal water slurry preparation with different coal ranks[J]. Journal of Fuel Chemistry and Technology, 2007, 35(2): 146-154.)

    3. [3]

      [3] 王彬. 浅析褐煤提质技术现状[J]. 煤质技术, 2011, (4): 9-13. (WANG Bin. Discussion on the present situation of lignite upgrading technology[J]. Coal Quality Technology, 2011, (4): 9-13.)

    4. [4]

      [4] 张殿奎. 我国褐煤综合利用的发展现状及展望[J]. 神华科技, 2010, 8(1): 51-56. (ZHANG Dian-kui. Development situation and outlook for comprehensive utilization of brown coal in China[J]. Shenhua Science and Technology, 2010, 8(1): 51-56.)

    5. [5]

      [5] 朱书全. 褐煤提质技术开发现状及分析[J]. 洁净煤技术, 2011, 17(1): 1-4. (ZHU Shu-quan. Development status and analysis of lignite quality improvement technology[J]. Clean Coal Technology, 2011, 17(1): 1-4.)

    6. [6]

      [6] 邵俊杰. 褐煤提质技术现状及我国褐煤提质技术发展趋势初探[J]. 神华科技, 2009, 7(2): 17-22. (SHAO Jun-jie. The development status of lignite quality improvement technology and development trend of China's lignite quality improvement technology[J]. Shenhua Science and Technology, 2009, 7(2): 17-22.)

    7. [7]

      [7] 马尊美. 煤的最高内在水分测定方法及应用[J]. 煤炭科学技术, 1987, (6): 23-26. (MA Zun-mei. Determination method and application for moisture holding capacity of coal[J]. Coal Science and Technology, 1987, (6): 23-26.)

    8. [8]

      [8] 李敏. 煤表面含氧官能团的研究[D]. 太原: 太原理工大学, 2004. (LI Min. Research on oxygen-containing functional groups on coal surface[D]. Taiyuan: Taiyuan University of Technology, 2004.)

    9. [9]

      [9] YU Y J, LIU J Z, WANG R K, ZHOU J H, CEN K F. Effect of hydrothermal dewatering on the slurry ability of brown coals[J]. Energy Conver Manage, 2012, 57: 8-12.

    10. [10]

      [10] 周剑林, 王永刚, 黄鑫, 张书, 林雄超. 低阶煤中含氧官能团分布的研究[J]. 燃料化学学报, 2013, 41(2): 134-138. (ZHOU Jian-lin, WANG Yong-gang, HUANG Xin, ZHANG Shu, LIN Xiong-chao. Determination of O-containing functional groups distribution in low-rank coals by chemical titration[J]. Journal of Fuel Chemistry and Technology, 2013, 41(2): 134-138.)

    11. [11]

      [11] 王娜, 朱书全, 杨玉立, 吴鹏, 张恒. 含氧官能团对褐煤热态提质型煤防水性的影响[J]. 煤炭科学技术, 2010, 38(3): 125-128. (WANG Na, ZHU Shu-quan, YANG Yu-li, WU Peng, ZHANG Heng. Oxygen-containing function groups affected to waterproof of thermal upgraded lignite briquettes[J]. Coal Science and Technology, 2010, 38(3): 125-128.)

    12. [12]

      [12] ALLARDIC D J, CLEMOW L M, JACKSON W R. Determination of the acid distribution and total acidity of low-rank coals and coal-derived materials by an improved barium exchange technique[J]. Fuel, 2003, 82(1): 35-40.

    13. [13]

      [13] GB/T 4632-2008, 煤的最高内在水分测定方法[S]. (GB/T 4632-2008, Determination method for the moisture holding capacity of coal[S].)

    14. [14]

      [14] 戴中蜀, 郑昀晖, 马立红. 低煤化度煤低温热解脱氧后结构的变化[J]. 燃料化学学报, 1999, 27(3): 256-261. (DAI Zhong-shu, ZHENG Yun-hui, MA Li-hong. Structural change of low rank coal by deoxygen under pyrolysis at low temperature[J]. Journal of Fuel Chemistry and Technology, 1999, 27(3): 256-261.)

    15. [15]

      [15] 李春柱. 维多利亚褐煤科学进展[M]. 北京: 化学工业出版社, 2007: 116-117. (LI Chun-zhu. Advances in the science of Victorian brown coal[M]. Beijing: Chemical Industry Press, 2007: 116-117.)

    16. [16]

      [16] 童兰英. 白音华褐煤热解以及酚类酚类化合物分布的研究[D]. 大连: 大连理工大学, 2008. (TONG Lan-ying. Distribution of phenols and pyrolysis of Baiyinhua lignite[D]. Dalian: Dalian University of Technology, 2008.)

    17. [17]

      [17] 王宝俊, 李敏, 赵青艳, 秦育红, 谢克昌. 煤的表面电位与表面官能团间的关系[J]. 化工学报, 2004, 55(8): 1329-1334. (WANG Bao-jun, LI Min, ZHAO Qing-yan, QIN Yu-hong, XIE Ke-chang. Relationship between surface potential and functional groups of coals[J]. Journal of Chemical Industry and Engineering, 2004, 55(8): 1329-1334.)

    18. [18]

      [18] 杨林江, 欧阳云丽, 柯文丽, 游艺, 李庆会. 煤岩润湿性影响因素研究[J]. 煤, 2012, 21(8): 4-5. (YANG Lin-jiang, OUYANG Yun-li, KE Wen-li, YOU Yi, LI Qing-hui. Research on the impact factors of coal wettability[J]. Coal, 2012, 21(8): 4-5.)

    19. [19]

      [19] 谢克昌. 煤的结构与反应性[M]. 北京: 科学出版社, 2002: 274-275. (XIE Ke-chang. Coal structure and its reactivity[M]. Beijing: Science Press, 2002: 274-275.)

    20. [20]

      [20] 王贤华, 徐健, 杨海平, 陈汉平. 加压热解对煤焦理化结构特性的影响[J]. 华中科技大学学报, 2011, 39(7): 123-127. (WANG Xian-hua, Xu Jian, YANG Hai-ping, CHEN Han-ping. Influence of pyrolysis pressure on coal char physic-chemical property[J]. Journal of Huazhong University of Science and Technology, 2011, 39(7): 123-127.)

  • 加载中
    1. [1]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    6. [6]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    7. [7]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    8. [8]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    9. [9]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    10. [10]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    11. [11]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    12. [12]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    13. [13]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    14. [14]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    15. [15]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    16. [16]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    17. [17]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    18. [18]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    19. [19]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    20. [20]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

Metrics
  • PDF Downloads(0)
  • Abstract views(792)
  • HTML views(93)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return