Citation: LIU Zi-song, WEI Yong-gang, LI Kong-zhai, WANG Hua, ZHU Xing, DU Yun-peng. Fe2O3/Al2O3 oxygen carriers for chemical looping combustion of methane: Influence of Fe2O3 loadings and preparation methods[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(11): 1384-1392. shu

Fe2O3/Al2O3 oxygen carriers for chemical looping combustion of methane: Influence of Fe2O3 loadings and preparation methods

  • Corresponding author: WEI Yong-gang, 
  • Received Date: 26 March 2013
    Available Online: 28 May 2013

    Fund Project: 国家自然科学基金(51174105, 51004060, 51104074, 51204083) (51174105, 51004060, 51104074, 51204083)云南省中青年学术技术带头人后备人才培养基金(2012HB009)。 (2012HB009)

  • A series of Fe2O3/Al2O3 oxygen carriers with different Fe2O3 loading were prepared by different methods and characterized by means of XRD, H2-TPR, CH4-TPR, O2-TPD and BET technologies. The effects of the preparation methods on the Fe2O3/Al2O3 oxygen carrier structure, activity and the selectivity for CO2 were also investigated. An obvious effect of Fe2O3 loading on the reactivity for methane oxidation and the CO2 selectivity is observed. Lower Fe2O3 loading results in a lower reactivity of oxygen carrier and more CO content in the product gas. The reactivity of Fe2O3/Al2O3 is also affected by the preparation method of oxygen carrier. The Fe2O3/Al2O3 oxygen carrier with a Fe2O3 loading of 60% (mass ratio) has the best activity and redox stability for methane oxidation. Methane can be quickly converted to CO2 and H2O with higher selectivity at 850℃ for 15 min. After redox cycling in alternant methane/air atmosphere for 30 times, no decline in the conversion of methane and the formation of CO2 is observed.
  • 加载中
    1. [1]

      [1] LYNGFELT A, LECKNER B. Technology for CO2 separation[C]//Minisymposium on carbon dioxide capture and storage, School of Environmental Sciences, CTH and GU, ed. Lygnfelt, A, Azar C, 1999: 25-35.

    2. [2]

      [2] RICHTER H J,KNOCHE K. Reversibility of combustion process[C]//Efficiency and costing-second law analysis of processes(ACS Symposium Series). Washington DC: American Chemical Society, 1983: 71-85.

    3. [3]

      [3] LYNGFELT A, KRONBERGER B, ADANEZ J, MORIN J X, HURST P. The GRACE project. Development of oxygen carrier particles for chemical-looping combustion. Design and operation of a 10 kW chemical-looping combustor[C]//7th International Conference on Greenhouse Gas Control Technologies, Vancouver, Canada, 2004.

    4. [4]

      [4] JIN H G, HONG H, HAN T. Progress of energy system with chemical-looping combustion[J].Chinese Science Bulletin, 2008, 54(6): 906-919.

    5. [5]

      [5] 金红光, 王宝群. 化学能梯级利用机理探讨[J]. 工程热物理学报, 2004, 25(2): 181-184. (JIN Hong-guang, WANG Bao-qun. Principle of cascade utilization of Chemical energy[J]. Journal of Engineering Thermophysics, 2004, 25(2): 181-184.)

    6. [6]

      [6] THOMAS D C, BENSON S. Carbon dioxide capture for storage in deep geologic formations: Results from the CO2 capture project[M]. Elsevier, 2005.

    7. [7]

      [7] KERR H R. Capture and separation technologies gaps and priority research needs[J]. Carbon Dioxide Capture for Storage in Deep Geologic Formations-Results from the CO2 Capture Project, 2005, 1.

    8. [8]

      [8] 刘黎明, 赵海波, 郑楚光. 化学链燃烧方式中氧载体的研究进展[J]. 煤炭转化, 2006, 29(3): 83-93. (LIU Li-ming, ZHAO Hai-bo, ZHENG Chu-guang. Advances on oxygen carriers of chemical-looping combustion[J]. Coal Conversion, 2006, 29(3): 83-93.)

    9. [9]

      [9] ADANEZ J, GARCIA-LABIANO F, DE DIEGO LUIS F. Nickel-copper oxygen carriers to reach zero CO and H2 emissions in chemical-looping combustion[J]. Ind Eng Chem Res, 2006, 45(8): 2617-2625.

    10. [10]

      [10] CHO P, MATTISSON T, LYNGFELT A. Comparison of iron-,nickel- and manganese-based oxygen carriers for chemical-looping combustion[J]. Fuel, 2004, 83(9): 1215-1225.

    11. [11]

      [11] DE DIEGO LUIS F, GARCIA-LABIANO F, ADANEZ J. Development of Cu-based oxygen carriers for chemical-looping combustion[J]. Fuel, 2004, 83(13): 1749-1757.

    12. [12]

      [12] MATTISSON T, JOHANSSON M, LYNGFELT A. Multicycle reduction and oxidation of different types of iron particles application to chemical-looping combustion[J]. Energy Fuels, 2004, 18(3): 628-637.

    13. [13]

      [13] 沈来宏, 肖军, 肖睿, 张辉. 基于CaSO4载氧体的煤化学链燃烧分离CO2 研究[J]. 中国电机工程学报, 2007, 27(2): 69-74. (SHEN Lai-hong, XIAO Jun, XIAO Rui, ZHANG Hui. Chemical looping combustion of coal in interconnected fluidized beds of CaSO4 oxygen carrier[J]. Proceedings of the CSEE, 2007, 27(2): 69-74.)

    14. [14]

      [14] 郑瑛, 王保文, 宋侃, 郑楚光. 化学链燃烧技术中新型氧载体CaSO4的特性研究[J]. 工程热物理学报, 2006, 27(3): 531-533. (ZHENG Ying, WANG Bao-wen, SONG Kan, ZHENG Chu-guang. The performance research on new oxygen carrier CaSO4 used in chemical-looping combustion[J]. Journal of Engineering Thermophysics, 2006, 27(3): 531-533.)

    15. [15]

      [15] 高正平, 沈来宏, 肖军, 吴家桦. 基于Fe2O3 载氧体的煤化学链燃烧试验[J]. 中国工程热物理学报, 2009, 30(7): 1249-1252. (GAO Zheng-ping, SHEN Lai-hong, XIAO Jun, WU Jia-hua. Multicycle reduction of coal as fuel for chemical-looping combustion with Fe-based oxygen carrier[J]. Journal of Engineering Thermophysics, 2009, 30(7): 1249-1252.)

    16. [16]

      [16] 宋涛, 沈来宏, 肖军, 高正平, 顾海明, 张思文.铁矿石载氧体化学链燃烧高温还原表征[J]. 燃料化学学报, 2011, 39(8): 567-574. (SONG Tao, SHEN Lai-hong, XIAO Jun, GAO Zheng-ping, GU Hai-ming, ZHANG Si-wen. Characterization of hematite oxygen carrier in chemical-looping combustion at high reduction temperature[J]. Journal of Fuel Chemistry and Technology, 2011, 39(8): 567-574.)

    17. [17]

      [17] HOSSAIN M, DE LASA H. Chemical-looping combustion (CLC) for inherent CO2 separations-A review[J]. Chemi Engineer Sci, 2008, 63: 4433-4451.

    18. [18]

      [18] ADANEZ J, DE DIEGO LUIS F, GARCIA-LABIANO F, GAYAN P, ABAD A, PALACIOS J M. Selection of oxygen carriers for chemical-looping combustion[J]. Energy Fuels, 2004, 18(2): 371-377.

    19. [19]

      [19] SON S R, GO K S, KIM S D. Thermogravimetric analysis of copper oxide for chemical-looping hydrogen generation[J]. Ind Eng Chem Res, 2009, 48(1): 380-387.

    20. [20]

      [20] MATTISSON T, LEION H, LYNGFELT A. Chemical-looping with oxygen uncoupling using CuO/ZrO2 with petroleum coke[J]. Fuel, 2009, 88(4): 683-690.

    21. [21]

      [21] 梅道锋, 赵海波, 马兆军, 郑楚光. Fe2O3/Al2O3氧载体制备方法的研究[J]. 燃料化学学报, 2012, 40(7): 795-802. (MEI Dao-feng, ZHAO Hai-bo, MA Zhao-jun, ZHENG Chu-guang. Preparation method study on Fe2O3/Al2O3 oxygen carrier[J]. Journal of Fuel Chemistry and Technology, 2012, 40(7): 795-802.)

    22. [22]

      [22] WANG B, YAN R, LEE D, ZHENG Y, ZHAO H, ZHENG C. Characterization and evaluation of Fe2O3/Al2O3 oxygen carrierprepared by sol-gel combustion synthesis[J]. J Anal Appl Pyrolysis, 2011, 91(1): 105-113.

    23. [23]

      [23] ZHANG L, WANG X, MILLET J, MATTER P, OZKAN U. Investigation of highly active Fe-Al-Cu catalysts for water-gas shift reaction[J]. Appl Catal A: Gen, 2008, 351(1): 1-8.

    24. [24]

      [24] MAGNACCA G, CERRATO G, MORTERRA C, SIGNORETTO M, SOMMA F, PINNA F. Structural and surface characterization of pure and sulfated iron oxides[J]. Chem Mater, 2003, 15: 675-87.

    25. [25]

      [25] KOCK A J H M, FORTUIN H M, GEUS J W. The reduction behavior of supported iron catalysts in hydrogen or carbon monoxide atmospheres[J]. J Catal, 1985, 96(1): 261-275.

    26. [26]

      [26] BAROSA A L, HERGUIDO J, SANTAMARIA J. Methane combustion over unsupported iron oxide catalysts[J]. Catal Today, 2001, 64: 43-50.

    27. [27]

      [27] DAI X P, LI R J, YU C C, HAO Z P. Unsteady-state direct partial oxidation of methane to synthesis gas in a fixed-bed reactor using AFeO(3) (A = La, Nd, Eu) perovskite-type oxides as oxygen storage[J]. J Phys Chem B, 2006, 110: 22525-22531.

    28. [28]

      [28] GEMMI M, MERLINI M, CORNARO U, GHISLETTI D, ARTIOLI G. In situ simultaneous synchrotron powder diffraction and mass spectrometry study of methane anaerobic combustion on iron-oxide-based oxygen carrier[J]. J Appl Cryst, 2005, 38: 353-360.

    29. [29]

      [29] TURNOCK A C, EUGSTER H P. Fe-Al oxides: Phase relationships below 1000℃[J]. Petrology, 1962, 3(3): 533-565.

    30. [30]

      [30] LEION H, MATTISSSON T, LYNGFELT A. Use of ores and industrial products as oxygen carriers in chemical-looping combustion[J]. Energy Fuels, 2009, 23(4): 2307-15.

    31. [31]

      [31] KIDAMBI P R, CLEETON J P E, SCOTT S A, DENNIS J S, BOHN C D. Interaction of iron oxide with alumina in a composite oxygen carrier during the production of hydrogen by chemical looping[J]. Energy Fuels, 2012, 26(1): 603-617.

    32. [32]

      [32] ADANEZ J, ABAD A, GARCIA-LABIANO F, GAYAN P, DE DIEGO L F. Progress in chemical-looping combustion and reforming technologies[J]. Prog Energy Combust Sci, 2012, 38(2): 215-282

    33. [33]

      [33] 刘黎明. 煤基化学链燃烧技术的氧载体研究[D]. 华中科技大学, 2007. (LIU Li-ming. Study on oxygen carriers for chemical looping combustion of coal[D]. Huazhong University of Science and Technology, 2007.)

    34. [34]

      [34] 高正平, 沈来宏, 肖军, 郑敏, 吴家桦. 煤化学链燃烧Fe2O3载氧体的反应性研究[J]. 燃料化学学报, 2009, 37(5): 513-520. (GAO Zheng-ping, SHEN Lai-hong, XIAO Jun, ZHENG Min, WU Jia-hua. Analysis of reactivity of Fe-based oxygen carrier with coal during chemical-looping combustion[J]. Journal of Fuel Chemistry and Technology, 2009, 37(5): 513-520.)

  • 加载中
    1. [1]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    4. [4]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    5. [5]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    6. [6]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    7. [7]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    8. [8]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    9. [9]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    10. [10]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    11. [11]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    12. [12]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    13. [13]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    14. [14]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    15. [15]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    16. [16]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    17. [17]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    18. [18]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    19. [19]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    20. [20]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

Metrics
  • PDF Downloads(0)
  • Abstract views(652)
  • HTML views(142)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return