Citation: YANG Gai-xiu, LI Ying, YUAN Zhen-hong, KONG Xiao-ying, LI Ting, CHEN Guan-yi, LU Tian-hong, SUN Yong-ming. Electrocatalytic performance of the carbon supported Pd-P catalyst for formic acid oxidation[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(11): 1367-1370. shu

Electrocatalytic performance of the carbon supported Pd-P catalyst for formic acid oxidation

  • Corresponding author: SUN Yong-ming, 
  • Received Date: 28 February 2013
    Available Online: 29 May 2013

    Fund Project: 中国科学院可再生能源重点实验室(Y207K5)。 (Y207K5)

  • The Pd-P/C catalyst with the high content of P0 was successfully prepared with the organic impregnation-reduction method. Pd-P/C catalysts with different Pd/P atomic ratios were characterized by X-ray diffraction (XRD), Energy Dispersive X-ray Spectrometer (EDX). The effect of Pd-P/C catalysts with different Pd/P atomic ratios on the oxidation of formic acid was also demonstrated by several electrochemical measures. It was found that the potential of the anodic peak of formic acid at catalyst electrodes increased in the order of Pd1P6/C < Pd1P8/C < Pd/C, and the electrochemical stability of three electrodes was in the order of Pd1P6/C > Pd1P8/C > Pd/C. The Pd1P6 catalyst showed the best performance for the oxidation of formic acid. The Pd-P/C catalysts with the suitable atomic ratio of Pd and P had higher activity and stability for the oxidation of formic acid.
  • 加载中
    1. [1]

      [1] BAIK S M, HAN J, KIM J, KWON Y. Effect of deactivation and reactivation of palladium anode catalyst on performance of direct formic acid fuel cell (DFAFC)[J]. Int J Hydrogen Energy, 2011, 36(22): 14719-14724.

    2. [2]

      [2] BAIK S M, KIM J, HAN J, KWON Y. Performance improvement in direct formic acid fuel cells (DFAFCs) using metal catalyst prepared by dual mode spraying[J]. Int J Hydrogen Energy, 2011, 36(19): 12583-12590.

    3. [3]

      [3] QU W L, WANG Z B, JIANG Z Z, GU D M, YIN G P. Investigation on performance of Pd/Al2O3-C catalyst synthesized by microwave assisted polyol process for electrooxidation of formic acid[J]. Rsc Advances, 2012, 2(1): 344-350.

    4. [4]

      [4] RHEE Y W, HA S Y, MASEL R I. Crossover of formic acid through Nafion membranes[J]. J Power Sources, 2003, 117(1): 35-38.

    5. [5]

      [5] CAPON A, PARSONS R. The oxidation of formic acid on noble metal electrodes: II. A comparison of the behaviour of pure electrodes[J]. J Electroanal Chem Int Eletronanal Chem, 1973, 44(2): 239-254.

    6. [6]

      [6] KWON Y, BAIK S M, HAN J, KIM J. Performance enhancement by adaptation of long term chronoamperometry in direct formic acid fuel cell using palladium anode catalyst[J]. B Korean Chem Soc, 2012, 33(8): 2539-2545.

    7. [7]

      [7] WANG R, LIAO S, JI S. High performance Pd-based catalysts for oxidation of formic acid[J]. J Power Sources, 2008, 180(1): 205-208.

    8. [8]

      [8] LI R, WEI Z, HUANG T, YU A. Ultrasonic-assisted synthesis of Pd-Ni alloy catalysts supported on multi-walled carbon nanotubes for formic acid electrooxidation[J]. Electrochimica Acta, 2011, 56(19): 6860-6865.

    9. [9]

      [9] CHIOU Y J, CHEN K Y, LIN H M, LIOU W J, LIOU H W, WU S H, MIKOLAJCZUK A, MAZURKIEWICZ M, MALOLEPSZY A, STOBINSKI L, BORODZINSKI A, KEDZIERZAWSKI P, KURZYDLOWSKI K, CHIEN S H, CHEN W C. Electrocatalytic properties of hybrid palladium-gold/multi-walled carbon nanotube materials in fuel cell applications[J]. Phys Status Solidi A, 2011, 208(8): 1778-1782.

    10. [10]

      [10] DAIMON H, KUROBE Y. Size reduction of PtRu catalyst particle deposited on carbon support by addition of non-metallic elements[J]. Catal Today, 2006, 111(3): 182-187.

    11. [11]

      [11] OKAMOTO Y, NITTA Y, IMANAKA T, TERANISHI S. Surface state and catalytic activity and selectivity of nickel catalysts in hydrogenation reactions: III. Electronic and catalytic properties of nickel catalysts[J]. J Catal, 1980, 64(2): 397-404.

    12. [12]

      [12] XUE X, GE J, LIU C, XING W, LU T. Novel chemical synthesis of Pt-Ru-P electrocatalysts by hypophosphite deposition for enhanced methanol oxidation and CO tolerance in direct methanol fuel cell[J]. Electrochem Commun, 2006, 8(8): 1280-1286.

    13. [13]

      [13] XUE X, GE J, TIAN T, LIU C, XING W, LU T. Enhancement of the electrooxidation of ethanol on Pt-Sn-P/C catalysts prepared by chemical deposition process[J]. J Power Sources, 2007, 172(2): 560-569.

    14. [14]

      [14] ZHANG L, TANG Y, BAO J, LU T, LI C. A carbon-supported Pd-P catalyst as the anodic catalyst in a direct formic acid fuel cell[J]. J Power Sources, 2006, 162(1): 177-179.

    15. [15]

      [15] ZHANG L, LU T, BAO J, TANG Y, LI C. Preparation method of an ultrafine carbon supported Pd catalyst as an anodic catalyst in a direct formic acid fuel cell[J]. Electrochem Commun, 2006, 8(10): 1625-1627.

    16. [16]

      [16] BONINO J P, BRUET-HOTELLAZ S, BORIES C, POUDEROUX P, ROUSSET A. Thermal stability of electrodeposited Ni-P alloys[J]. J Appl Electrochem, 1997, 27(10): 1193-1197.

    17. [17]

      [17] SUN H, XU J, FU G, MAO X, ZHANG L, CHEN Y, ZHOU Y, LU T, TANG Y. Preparation of highly dispersed palladium-phosphorus nanoparticles and its electrocatalytic performance for formic acid electrooxidation[J]. Electrochimica Acta, 2012, 59: 279-283.

    18. [18]

      [18] CHENG L, ZHANG Z, NIU W, XU G, ZHU L. Carbon-supported Pd nanocatalyst modified by non-metal phosphorus for the oxygen reduction reaction[J]. J Power Sources, 2008, 182(1): 91-94.

    19. [19]

      [19] PAN Y, ZHANG R, BLAIR S L. Anode poisoning study in direct formic acid fuel cells[J]. Electrochem Solid State Lett, 2009, 12(3): B23-B26.

    20. [20]

      [20] YANG G, CHEN Y, ZHOU Y, TANG Y, LU T. Preparation of carbon supported Pd-P catalyst with high content of element phosphorus and its electrocatalytic performance for formic acid oxidation[J]. Electrochem Commun, 2010, 12(3): 492-495.

    21. [21]

      [21] YU X, PICKUP P G. Novel Pd-Pb/C bimetallic catalysts for direct formic acid fuel cells[J]. J Power Sources, 2009, 192(2): 279-284.

  • 加载中
    1. [1]

      Mingjie Lei Wenting Hu Kexin Lin Xiujuan Sun Haoshen Zhang Ye Qian Tongyue Kang Xiulin Wu Hailong Liao Yuan Pan Yuwei Zhang Diye Wei Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083

    2. [2]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    3. [3]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    4. [4]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    8. [8]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    9. [9]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    10. [10]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    11. [11]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    12. [12]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    13. [13]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    14. [14]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    15. [15]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    16. [16]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    17. [17]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    18. [18]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    19. [19]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    20. [20]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

Metrics
  • PDF Downloads(0)
  • Abstract views(606)
  • HTML views(60)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return