Citation:
WANG Rui-yu, LI Zhong. Preparation and catalytic activity of CuNaY zeolite in oxidative carbonylation of methanol[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(11): 1361-1366.
-
Ammonia was added to the ion-exchange solution to adjust the pH in the preparation of CuNaY catalyst by ion-exchange of NaY zeolite with Cu2+ aqueous solution, and then the ion-exchanged CuNaY was activated by high temperature calcinations. The effect of anion type in the Cu2+ aqueous solution on the ion-exchange process and catalytic performance of the catalyst were studied, it is shown that the catalytic activity of CuNaY ion-exchanged of NaY with aqueous solution of copper salts was low, when the pH of ion-exchange solution was adjusted to 11 by adding ammonia, the catalytic activity and selectivity of DMC increased greatly. Based on the characterization of the microstructure of the catalyst by elementary analysis, XRD, XPS and H2-TPR techniqs, it is shown that by adding ammonia into the ion-exchange solution, the ion-exchanged reaction is promoted, resulting in the increase of the ion-exchanged Cu2+, 75% of the Cu2+ in the catalyst located in the supercages of the Y zeolite.
-
-
-
[1]
[1] DELLEDONNE D, RIVETTI F, ROMANO U. Developments in the production and application of dimethyl carbonate[J]. Appl Catal A: Gen, 2001, 221(1/2): 241-246.
-
[2]
[2] TOMISHIGE K, SAKAIHORI T, SAKAI S, FUJIMOTO K. Dimethyl carbonate synthesis by oxidative carbonylation on activated carbon supported CuCl2 catalysts: Catalytic properties and structural change[J]. Appl Catal A: Gen, 1999, 181(1): 95-102.
-
[3]
[3] JIANG R X, WANG S F, ZHAO X Q, WANG Y J, ZHANG C F. The effects of promoters on catalytic properties and deactivation-regeneration of the catalyst in the synthesis of dimethyl carbonate[J]. Appl Catal A: Gen, 2003, 238(1): 131-139.
-
[4]
[4] LI Z, XIE K C, SLADE R C T. Studies of interaction between CuCl and HY zeolite for preparing heterogeneous CuⅠ catalyst[J]. Appl Catal A: Gen, 2001, 209(1/2): 107-115.
-
[5]
[5] DRAKE I J, FUJDALA K L, BELL A T, TILLEY T D. Dimethyl carbonate production via the oxidative carbonylation of methanol over Cu/SiO2 catalysts prepared via molecular precursor grafting and chemical vapor deposition approaches[J]. J Catal, 2005, 230(1): 14-27.
-
[6]
[6] DRAKE I J, ZHANG Y H, BRIGGS D, LIM B, CHAU T, BELL A T. The local environment of Cu+ in Cu-Y zeolite and its relationship to the synthesis of dimethyl carbonate[J]. J Phys Chem B, 2006, 110(24): 11654-11664.
-
[7]
[7] RICHTER M, FAIT M J G, ECKELT R, SCHREIER E, SCHNEIDER M, POHL M-M, FRIKE R. Oxidative gas phase carbonylation of methanol to dimethyl carbonate over chloride-free Cu-impregnated zeolite Y catalysts at elevated pressure[J]. Appl Catal B: Environ, 2007, 73(3/4): 269-281.
-
[8]
[8] RICHTER M, FAIT M J G, ECKELT R, SCHNEIDER M, RADNIK J, HEIDEMANN D, FRICKE R. Gas-phase carbonylation of methanol to dimethyl carbonate on chloride-free Cu-precipitated zeolite Y at normal pressure[J]. J Catal, 2007, 245(1): 11-24.
-
[9]
[9] ZHANG Y H, DRAKE I J, BRIGGS D N, BELL A T. Synthesis of dimethyl carbonate and dimethoxy methane over Cu-ZSM-5[J]. J Catal, 2006, 244(2): 219-229.
-
[10]
[10] ZHANG Y H, BRIGGS D N, SMIT E D, BELL A T. Effects of zeolite structure and composition on the synthesis of dimethyl carbonate by oxidative carbonylation of methanol on Cu-exchanged Y, ZSM-5, and Mordenite[J]. J Catal, 2007, 251(2): 443-452.
-
[11]
[11] ZHANG Y H, BELL A T. The mechanism of dimethyl carbonate synthesis on Cu-exchanged zeolite Y[J]. J Catal, 2008, 255(2): 153-161.
-
[12]
[12] KING S T. Oxidative carbonylation of methanol to dimethyl carbonate by solid-state ion-exchanged CuY catalysts[J]. Catal Today, 1997, 33(1/3): 173-182.
-
[13]
[13] CHEN H J, MATSUOKA M, ZHANG J L, ANPO M. The reduction behavior of the Cu ion species exchanged into Y zeolite during the thermovacuum treatment[J]. J Catal, 2004, 228(1): 75-79.
-
[14]
[14] IWAMOTO M, YAHIRO H, TORIKAI Y, YOSHIOKA T, MIZUNO N. Novel preparation method of highly copper ion-exchanged ZSM-5 zeolite and their catalytic activities for NO decomposition[J]. Chem Lett, 1990, 19(11): 1967-1970.
-
[15]
[15] IWAMOTO M, YOKOO S, SAKAI K, KAGAWA S. Catalytic decomposition of nitric oxide over copper(Ⅱ)-exchanged, Y-type zeolites[J]. J Chem Soc, Faraday Trans 1, 1981, 77: 1629-1638.
-
[16]
[16] 李忠, 付廷俊, 王瑞玉, 牛燕燕, 郑华艳. 高活性甲醇氧化羰基化CuY催化剂的结构及催化活性中心[J]. 高等学校化学学报, 2011, 32(6): 1366-1372. (LI Zhong, FU Ting-Jun, WANG Rui-Yu, NIU Yan-Yan, ZHENG Hua-Yan. Structure and catalytic active center of high catalytic activity CuY catalysts in oxidative carbonylation of methanol[J]. Chemical Journal of Chinese Universities, 2011, 32(6): 1366-1372.)
-
[17]
[17] NARAYANA M, CONTARINI S, KEVAN L. X-ray photoelectron and electron spin resonance spectroscopic studies of CuNaY zeolites[J]. J Catal, 1985, 94(2): 370-375.
-
[18]
[18] GOSLAR J, WIECKOWSKI A B. Migration and structure of aqueous Cu2+ complexes in faujasite[J]. J Solid State Chem, 1985, 56(1): 101-115.
-
[19]
[19] MAXWELL I E, DE BOER J J. Crystal structures of hydrated and dehydrated divalent-copper- exchanged Faujasite[J]. J Phys Chem, 1975, 79(17): 1874-1879.
-
[20]
[20] LEE C Y, CHOI K Y, HA B H. Catalytic decomposition of nitric-oxide on copper zeolites[J]. Appl Catal B: Environ, 1994, 5(1/2): 7-21.
-
[21]
[21] 万颖, 马建新, 王正, 周伟, 张益群. Cu-Al-MCM-41的Si/Al比对贫燃条件下NO选择性催化还原的影响[J]. 催化学报, 2004, 25(1): 27-32. (WAN Yin, MA Jian-Xin, WANG Zheng, ZHOU Wei, ZHANG Yi-qun. Effect of Si/Al ratio in Cu-Al-MCM-41 on selective catalytic reduction of NO under lean burn conditions[J]. Chinese Journal of Catalysis, 2004, 25(1): 27-32.)
-
[22]
[22] BERTHOMIEU D, DELAHAY G. Recent advances in CuI/IIY: Experiments and modeling[J]. Catal Rev, 2006, 48(3): 269-313.
-
[23]
[23] 赵栋良, 赵勇. 碱性条件对NaY分子筛脱钠及其结构的影响[J]. 石油技术与应用, 2005, 23(5): 346-349. (ZHAO Dong-Liang, ZHAO Yong. Influence of alkali condition on removing Na of NaY molecular sieve and its structure[J]. Petrochemical Technology & Application, 2005, 23(5): 346-349.)
-
[1]
-
-
-
[1]
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
-
[2]
Feng Liang , Desheng Li , Yuting Jiang , Jiaxin Dong , Dongcheng Liu , Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009
-
[3]
Xinyu Liu , Weiran Hu , Zhengkai Li , Wei Ji , Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021
-
[4]
Yajin Li , Huimin Liu , Lan Ma , Jiaxiong Liu , Dehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005
-
[5]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[6]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[7]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[8]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[9]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[10]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[11]
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049
-
[12]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
-
[13]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[14]
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
-
[15]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[16]
Dong Xiang , Kunzhen Li , Kanghua Miao , Ran Long , Yujie Xiong , Xiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027
-
[17]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[18]
Ling Liu , Haibin Wang , Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080
-
[19]
Jingkun Yu , Xue Yong , Ang Cao , Siyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015
-
[20]
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(399)
- HTML views(27)