Citation: WANG Rui-yu, LI Zhong. Preparation and catalytic activity of CuNaY zeolite in oxidative carbonylation of methanol[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(11): 1361-1366. shu

Preparation and catalytic activity of CuNaY zeolite in oxidative carbonylation of methanol

  • Corresponding author: LI Zhong, 
  • Received Date: 29 March 2013
    Available Online: 24 June 2013

    Fund Project: 国家自然科学基金(20976113) (20976113)中央高校基本科研业务费专项资金(2010QNA11) (2010QNA11)中国矿业大学连云港徐圩新区高新技术研究院创新创业基金(2011KDGXYJJ06)。 (2011KDGXYJJ06)

  • Ammonia was added to the ion-exchange solution to adjust the pH in the preparation of CuNaY catalyst by ion-exchange of NaY zeolite with Cu2+ aqueous solution, and then the ion-exchanged CuNaY was activated by high temperature calcinations. The effect of anion type in the Cu2+ aqueous solution on the ion-exchange process and catalytic performance of the catalyst were studied, it is shown that the catalytic activity of CuNaY ion-exchanged of NaY with aqueous solution of copper salts was low, when the pH of ion-exchange solution was adjusted to 11 by adding ammonia, the catalytic activity and selectivity of DMC increased greatly. Based on the characterization of the microstructure of the catalyst by elementary analysis, XRD, XPS and H2-TPR techniqs, it is shown that by adding ammonia into the ion-exchange solution, the ion-exchanged reaction is promoted, resulting in the increase of the ion-exchanged Cu2+, 75% of the Cu2+ in the catalyst located in the supercages of the Y zeolite.
  • 加载中
    1. [1]

      [1] DELLEDONNE D, RIVETTI F, ROMANO U. Developments in the production and application of dimethyl carbonate[J]. Appl Catal A: Gen, 2001, 221(1/2): 241-246.

    2. [2]

      [2] TOMISHIGE K, SAKAIHORI T, SAKAI S, FUJIMOTO K. Dimethyl carbonate synthesis by oxidative carbonylation on activated carbon supported CuCl2 catalysts: Catalytic properties and structural change[J]. Appl Catal A: Gen, 1999, 181(1): 95-102.

    3. [3]

      [3] JIANG R X, WANG S F, ZHAO X Q, WANG Y J, ZHANG C F. The effects of promoters on catalytic properties and deactivation-regeneration of the catalyst in the synthesis of dimethyl carbonate[J]. Appl Catal A: Gen, 2003, 238(1): 131-139.

    4. [4]

      [4] LI Z, XIE K C, SLADE R C T. Studies of interaction between CuCl and HY zeolite for preparing heterogeneous Cu catalyst[J]. Appl Catal A: Gen, 2001, 209(1/2): 107-115.

    5. [5]

      [5] DRAKE I J, FUJDALA K L, BELL A T, TILLEY T D. Dimethyl carbonate production via the oxidative carbonylation of methanol over Cu/SiO2 catalysts prepared via molecular precursor grafting and chemical vapor deposition approaches[J]. J Catal, 2005, 230(1): 14-27.

    6. [6]

      [6] DRAKE I J, ZHANG Y H, BRIGGS D, LIM B, CHAU T, BELL A T. The local environment of Cu+ in Cu-Y zeolite and its relationship to the synthesis of dimethyl carbonate[J]. J Phys Chem B, 2006, 110(24): 11654-11664.

    7. [7]

      [7] RICHTER M, FAIT M J G, ECKELT R, SCHREIER E, SCHNEIDER M, POHL M-M, FRIKE R. Oxidative gas phase carbonylation of methanol to dimethyl carbonate over chloride-free Cu-impregnated zeolite Y catalysts at elevated pressure[J]. Appl Catal B: Environ, 2007, 73(3/4): 269-281.

    8. [8]

      [8] RICHTER M, FAIT M J G, ECKELT R, SCHNEIDER M, RADNIK J, HEIDEMANN D, FRICKE R. Gas-phase carbonylation of methanol to dimethyl carbonate on chloride-free Cu-precipitated zeolite Y at normal pressure[J]. J Catal, 2007, 245(1): 11-24.

    9. [9]

      [9] ZHANG Y H, DRAKE I J, BRIGGS D N, BELL A T. Synthesis of dimethyl carbonate and dimethoxy methane over Cu-ZSM-5[J]. J Catal, 2006, 244(2): 219-229.

    10. [10]

      [10] ZHANG Y H, BRIGGS D N, SMIT E D, BELL A T. Effects of zeolite structure and composition on the synthesis of dimethyl carbonate by oxidative carbonylation of methanol on Cu-exchanged Y, ZSM-5, and Mordenite[J]. J Catal, 2007, 251(2): 443-452.

    11. [11]

      [11] ZHANG Y H, BELL A T. The mechanism of dimethyl carbonate synthesis on Cu-exchanged zeolite Y[J]. J Catal, 2008, 255(2): 153-161.

    12. [12]

      [12] KING S T. Oxidative carbonylation of methanol to dimethyl carbonate by solid-state ion-exchanged CuY catalysts[J]. Catal Today, 1997, 33(1/3): 173-182.

    13. [13]

      [13] CHEN H J, MATSUOKA M, ZHANG J L, ANPO M. The reduction behavior of the Cu ion species exchanged into Y zeolite during the thermovacuum treatment[J]. J Catal, 2004, 228(1): 75-79.

    14. [14]

      [14] IWAMOTO M, YAHIRO H, TORIKAI Y, YOSHIOKA T, MIZUNO N. Novel preparation method of highly copper ion-exchanged ZSM-5 zeolite and their catalytic activities for NO decomposition[J]. Chem Lett, 1990, 19(11): 1967-1970.

    15. [15]

      [15] IWAMOTO M, YOKOO S, SAKAI K, KAGAWA S. Catalytic decomposition of nitric oxide over copper(Ⅱ)-exchanged, Y-type zeolites[J]. J Chem Soc, Faraday Trans 1, 1981, 77: 1629-1638.

    16. [16]

      [16] 李忠, 付廷俊, 王瑞玉, 牛燕燕, 郑华艳. 高活性甲醇氧化羰基化CuY催化剂的结构及催化活性中心[J]. 高等学校化学学报, 2011, 32(6): 1366-1372. (LI Zhong, FU Ting-Jun, WANG Rui-Yu, NIU Yan-Yan, ZHENG Hua-Yan. Structure and catalytic active center of high catalytic activity CuY catalysts in oxidative carbonylation of methanol[J]. Chemical Journal of Chinese Universities, 2011, 32(6): 1366-1372.)

    17. [17]

      [17] NARAYANA M, CONTARINI S, KEVAN L. X-ray photoelectron and electron spin resonance spectroscopic studies of CuNaY zeolites[J]. J Catal, 1985, 94(2): 370-375.

    18. [18]

      [18] GOSLAR J, WIECKOWSKI A B. Migration and structure of aqueous Cu2+ complexes in faujasite[J]. J Solid State Chem, 1985, 56(1): 101-115.

    19. [19]

      [19] MAXWELL I E, DE BOER J J. Crystal structures of hydrated and dehydrated divalent-copper- exchanged Faujasite[J]. J Phys Chem, 1975, 79(17): 1874-1879.

    20. [20]

      [20] LEE C Y, CHOI K Y, HA B H. Catalytic decomposition of nitric-oxide on copper zeolites[J]. Appl Catal B: Environ, 1994, 5(1/2): 7-21.

    21. [21]

      [21] 万颖, 马建新, 王正, 周伟, 张益群. Cu-Al-MCM-41的Si/Al比对贫燃条件下NO选择性催化还原的影响[J]. 催化学报, 2004, 25(1): 27-32. (WAN Yin, MA Jian-Xin, WANG Zheng, ZHOU Wei, ZHANG Yi-qun. Effect of Si/Al ratio in Cu-Al-MCM-41 on selective catalytic reduction of NO under lean burn conditions[J]. Chinese Journal of Catalysis, 2004, 25(1): 27-32.)

    22. [22]

      [22] BERTHOMIEU D, DELAHAY G. Recent advances in CuI/IIY: Experiments and modeling[J]. Catal Rev, 2006, 48(3): 269-313.

    23. [23]

      [23] 赵栋良, 赵勇. 碱性条件对NaY分子筛脱钠及其结构的影响[J]. 石油技术与应用, 2005, 23(5): 346-349. (ZHAO Dong-Liang, ZHAO Yong. Influence of alkali condition on removing Na of NaY molecular sieve and its structure[J]. Petrochemical Technology & Application, 2005, 23(5): 346-349.)

  • 加载中
    1. [1]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    2. [2]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    3. [3]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    4. [4]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    5. [5]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    6. [6]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    10. [10]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    11. [11]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    12. [12]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    13. [13]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    14. [14]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    15. [15]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    16. [16]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    17. [17]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    18. [18]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    19. [19]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    20. [20]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

Metrics
  • PDF Downloads(0)
  • Abstract views(400)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return