Citation: MA Li-hai, ZHANG Jian-li, FAN Su-bing, ZHAO Tian-sheng. Preparation of Fe-Mn catalyst by hydrothermal method and its catalytic activity for the synthesis of light olefins from CO hydrogenation[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(11): 1356-1360. shu

Preparation of Fe-Mn catalyst by hydrothermal method and its catalytic activity for the synthesis of light olefins from CO hydrogenation

  • Corresponding author: ZHANG Jian-li,  ZHAO Tian-sheng, 
  • Received Date: 28 February 2013
    Available Online: 14 April 2013

    Fund Project: 国家重点基础研究发展规划(973计划, 2012CB723106)。 (973计划, 2012CB723106)

  • A series of potassium modified Fe-Mn catalysts were prepared by hydrothermal method and applied to the catalytic synthesis of light olefins from CO hydrogenation. The catalyst samples were characterized by SEM, TEM, XRD, H2-TPR and FT-IR techniques. Results showed that the prepared sample particles were spherical with 50~70 nm size and the carbonyl and hydroxy groups were observed on their surfaces. The bulk composition was mainly Fe3O4 before the reaction. Fe5C2 and MnCO3 were formed after the reaction. The prepared samples showed high activity and olefin selectivity under the given reaction conditions. Using the sample S3 (Fe:Mn:C6:K=3:1:5:0.10), the CO conversion and the olefin productivity reached 95.02% and 62.86 g/m3 (H2+CO), respectively. Compared with the catalyst prepared with co-precipitation method, the S3 catalyst had lower CH4 selectivity(13.88%) and CO2 selectivity(13.98%).
  • 加载中
    1. [1]

      [1] 董丽, 杨学萍. 合成气直接制低碳烯烃技术发展前景[J]. 石油化工, 2012, 4(10): 1201-1206. (DONG Li, YANG Xue-ping. New advances in direct production of light olefins from syngas[J]. Petrochemical Technology, 2012, 4(10): 1201-1206.)

    2. [2]

      [2] ZHANG Q H, KANG J C, WANG Y. Development of novel catalysts for Fischer-Tropsch synthesis: Tuning the product selectivity[J]. ChemCatChem, 2010, 2(9): 1030-1058.

    3. [3]

      [3] RAJE A P, DAVIS B H. Fischer-Tropsch synthesis over iron-based catalysts in a slurry reactor reaction rates, selectivities and implications for improving hydrocarbon productivity[J]. Catal Today, 1997, 36(6): 335-345.

    4. [4]

      [4] YANG Y, XIANG H W, ZHANG Y L. A highly active and stable Fe-Mn catalyst for slurry Fischer-Tropsch synthesis[J]. Catal Today, 2005, 106(12): 170-175.

    5. [5]

      [5] ZHOU J, CHU W, ZHANG H, XU H, ZHANG T. Effect of Fe content on FeMn catalysts for light alkenes synthesis[J]. Nat Gas Chem Ind, 2008, 2(3): 315-318.

    6. [6]

      [6] YANG Y, XIANG H W, XU Y Y, LI Y W. Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer-Tropsch synthesis[J]. Appl Catal A: Gen, 2004, 266(2): 181-194.

    7. [7]

      [7] NING W S, KOIZUMI N, YAMADA M. Improvement of promoters on the Fischer Tropsch activity of mechanically mixed Fe catalysts[J]. Catal Commun, 2007, 8(3): 275-278.

    8. [8]

      [8] 张敬畅, 曹维良, 单伟力, 李梦波. 激光热解法制备铁基超微粒子催化剂及催化性能评价[J]. 催化学报, 1998, 19(1): 63-66. (ZHANG Jing-chang, CAO Wei-liang, SHAN Wei-li, LI Meng-bo. Preparation and characterization of Fe/ AC catalysts for synthesis of light olefins via carbon monoxide hydrogenation[J]. Chinese Journal of Catalysis, 1998, 19(1): 63-66.)

    9. [9]

      [9] GALVIS H M T, BITTER J H, KHARE C B, RUITENBEEK M, DUGULAN A L, JONG K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012, 335(2): 835-838.

    10. [10]

      [10] 禹国宾. 新型催化材料的制备及其在费托合成中的应用[D]. 复旦大学, 2009. (Yu Guo-bin. The preparation of a new catalytic material applying for F-T Synthesis[D]. Fudan University, 2009.)

    11. [11]

      [11] XU L, DU J, LI P, QIAN Y. In situ synthesis, magnetic property, and formation mechanism of Fe3O4 particles encapsulated in ID Bamboo-Shaped carbon microtubes[J]. J Phys Chem B, 2006, 110(5): 3871-3875.

    12. [12]

      [12] 付伯承. 碳包覆纳米四氧化三铁颗粒的合成与结构研究[D]. 北京化工大学, 2010. (FU Bo-cheng. Preparation and structure of carbon-encapsulated Fe3O4 nanoparticles[D]. Beijing University of Chemical Technology, 2010.)

    13. [13]

      [13] SUN X M, LIU J F, LI Y D. Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres[J]. Chem Eur J, 2006, 12(7): 2039-2047.

    14. [14]

      [14] BUKUR D B, LANG X S, DING Y J. Pretreatment effect studies with a precipitated iron Fischer-Tropsch catalyst in a slurry reactor[J]. Appl Catal A: Gen, 1999, 186(1/2): 255-275.

    15. [15]

      [15] 李先国, 王琴, 钟炳, 彭少逸, 马玉刚, 吴东. 铁基超细粒子催化剂的F-T反应性能研究I. Fe-Mn催化剂的反应性能、活性相结构及锰的作用[J]. 燃料化学学报, 1993, 21(4): 344-349. (LI Xian-guo, WANG Qin, ZHONG Bing, PENG Shao-yi, MA Yu-gang, WU Dong. Studies on the F-T performance of iron based ultrafing catalysts I: Performance of Fe-Mn catalyst, active phases and role of Mn[J]. Journal of Fuel Chemistry and Technology, 1993, 21(4): 344-349.)

    16. [16]

      [16] LEITH I R, HOWDEN M G. Temperature-programmed reduction of mixed iron-manganese oxide catalysts in hydrogen and carbon monoxide[J]. Appl Catal, 1988, 27(2): 75-92.

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    3. [3]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    4. [4]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    5. [5]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    6. [6]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    7. [7]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    8. [8]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    11. [11]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    12. [12]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    13. [13]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    14. [14]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    15. [15]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    16. [16]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    17. [17]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    18. [18]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    19. [19]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    20. [20]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

Metrics
  • PDF Downloads(0)
  • Abstract views(388)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return