Citation: ZHAO Xiao-bo, WANG Wen-ju, GUO Xin-wen, WANG Xiang-sheng. Effects of Al2O3 pore structure on FCC gasoline upgrading properties of the nanosized HZSM-5 based catalysts[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(11): 1343-1348. shu

Effects of Al2O3 pore structure on FCC gasoline upgrading properties of the nanosized HZSM-5 based catalysts

  • Corresponding author: ZHAO Xiao-bo, 
  • Received Date: 8 April 2013
    Available Online: 7 June 2013

    Fund Project: 中国石油天然气股份有限公司FCC汽油改质催化剂及工艺研究项目(20090392) (20090392)吉林省教育厅"十二五"科学技术研究项目(吉教科合字[2012]第364号)。 (吉教科合字[2012]第364号)

  • Two Al2O3 supports were characterized by means of NH3-TPD, FT-IR and N2 adsorption-desorption. The characterization results showed that the two Al2O3 supports have no significant differences in their total acidity and acidity strength. The acid sites are mainly Lewis ones, but Al2O3 (b) has larger average pore diameter and pore volume than Al2O3 (a). The influence of the pore structures of the Al2O3 supports on the full range FCC gasoline upgrading performance of the nanosized HZSM-5 based catalysts was investigated in a fixed-bed reactor. The results indicated that the HZSM-5 catalyst extruded with macroporous Al2O3 exhibited superior activity, stability and performance in reducing olefin content of FCC gasoline. The modified nanosized LaNiMo/HZSM-5 catalyst reduced olefin and sulfur concentration in FCC gasoline by about 83% and 87% within 300 h time on stream, respectively, meanwhile the gasoline octane number was preserved.
  • 加载中
    1. [1]

      [1] 杨光福, 王刚, 高金森, 徐春明. FCC汽油低温改质过程的烯烃转化及催化剂积炭[J]. 燃料化学学报, 2007, 35(5): 572-577. (YANG Guang-fu, WANG Gang, GAO Jin-sen, XU Chun-ming. Coke formation and olefins conversion in FCC naphtha olefin reformulation at low reaction temperature[J]. Journal of Fuel Chemistry and Technology, 2007, 35(5): 572-577.)

    2. [2]

      [2] 许友好, 张久顺, 龙军. 生产清洁汽油组分的催化裂化新工MIP[J]. 石油炼制与化工, 2001, 32(8): 1-5. (XU You-hao, HANG Jiu-shun, LONG Jun. A modified FCC process MIP for maximizing iso-paraffins in cracked naphtha[J]. Petroleum Processing and Petrochemicals, 2001, 32(8): 1-5.)

    3. [3]

      [3] 钟孝湘, 张执刚, 黎仕克, 康飚. 催化裂化多产液化气和柴油工艺技术的开发与应用[J]. 石油炼制与化工, 2001, 32(11): 1-5. (ZHONG Xiao-xiang, ZHANG Zhi-gang, LI Shi-ke, KANG Biao. Development and application of MGD technology for producing more LPG and LCO[J]. Petroleum Processing and Petrochemicals, 2001, 32(11): 1-5.)

    4. [4]

      [4] 孟凡东, 王龙延, 郝希仁. 降低催化裂化汽油烯烃技术—FDFCC工艺[J]. 石油炼制与化工, 2004, 35(8): 6-10. (MENG Fan-dong, WANG Long-yan, HAO Xi-ren. Technology for reducing olefin in cracked naphtha-FDFCC process[J]. Petroleum Processing and Petrochemicals, 2004, 35(8): 6-10.)

    5. [5]

      [5] 李大东, 石亚华, 杨清雨. 生产低硫低烯烃汽油的RIDOS技术[J]. 中国工程科学, 2004, 6(4): 1-8. (LI Da-dong, SHI Ya-hua, YANG Qing-yu. Low sulfur low olefin gasoline production by RIDOS technology[J]. Engineering Science, 2004, 6(4): 1-8.)

    6. [6]

      [6] 李明丰, 夏国富, 褚阳, 胡云剑. 催化裂化汽油选择性加氢脱硫催化剂RSDS-1的开发[J]. 石油炼制与化工, 2003, 34(7): 1-4. (LI Ming-feng, XIA Guo-fu, CHU Yang, HU Yun-jian. Preparation of selective hydrodesulfurization catalyst RSDS-1 for FCC naphtha[J]. Petroleum Processing and Petrochemicals, 2003, 34(7): 1-4.)

    7. [7]

      [7] 杨朝合, 山红红, 张建芳. 两段提升管催化裂化系列技术[J]. 炼油技术与工程, 2005, 35(3): 28-33. (YANG Chao-he, SHAN Hong-hong, ZHANG Jian-fang. Two-stage riser FCC technologies[J]. Petroleum Refinery Engineering, 2005, 35(3): 28-33.)

    8. [8]

      [8] ZHANG P Q, WANG X S, GUO X W, GUO H C, ZHAO L P, HU Y K. Characterization of modified nanoscale ZSM-5 zeolite and its application in the olefins reduction in FCC gasoline[J]. Catal Lett, 2004, 92(1/2): 63-68.

    9. [9]

      [9] 胡永康, 赵乐平, 李扬, 周勇, 郭洪臣, 王祥生.纳米ZSM-5沸石在OTA汽油降烯烃技术中的应用[J]. 中国有色金属学报, 2004, 14(1): 317-322. (HU Yong-kang, ZHAO Le-ping, LI Yang, ZHOU Yong, GUO Hong-chen, WANG Xiang-sheng. Development of OTA technology for olefin removal of full range FCC gasoline[J]. The Chinese Journal of Nonferrous Metals, 2004, 14(1): 317-322.)

    10. [10]

      [10] ZHANG P Q, GUO X W, GUO H C, WANG XI S. Study of the performance of modified nano-scale ZSM-5 zeolite on olefins reduction in FCC gasoline[J]. J Mol Catal A: Chem, 2007, 261(2): 139-146.

    11. [11]

      [11] ZHANG P Q, GUO X W, WANG XI S. Characterization of modified nanoscale ZSM-5 catalyst and its application in FCC gasoline upgrading process[J]. Energy Fuels, 2006, 20(4): 1388-1391.

    12. [12]

      [12] 尹双凤, 陈懿, 林洁, 于中伟. Zn/HZSM-5轻烃芳构化催化剂中Zn与分子筛协同作用的研究[J]. 天然气化工, 2001, 26(2): 6-9. (YIN Shuang-feng, CHEN Yi, LIN Jie, YU Zhong-wei. Study on synergistic action between Zn component and HZSM-5 in the Zn/HZSM-5 catalyst for aromatization of light paraffins[J]. Natural Gas Chemical Industry, 2001, 26(2): 6-9.)

    13. [13]

      [13] 吉媛媛, 满毅, 王焕茹, 杨菁. 黏合剂对其ZSM-5分子筛成型物裂解石脑油的影响[J]. 燃料化学学报, 2012, 40(6): 727-731. (JI Yuan-yuan, MAN Yi, WANG Huan-ru, YANG Ji. Influence of adhesive on the performance of extruded ZSM-5 catalysts in naphtha cracking[J]. Journal of Fuel Chemistry and Technology, 2012, 40(6): 727-731.)

    14. [14]

      [14] 王学勤, 王祥生, 郭新闻. 超细颗粒五元环型沸石的制备方法: 中国, 1260126[P]. 2006-06-21. (WANG Xue-qin, WANG Xiang-sheng, GUO Xin-wen. A method on the preparation of superfine particle zeolites with a five-membered ring: CN, 1260126[P]. 2006-06-21.)

    15. [15]

      [15] ZHAO X B, GUO X W, WANG X S. Effect of hydrothermal treatment temperature on FCC gasoline upgrading properties of the modified nanoscale ZSM-5 catalyst[J]. Fuel Process Technol, 2007, 88(3): 237-241.

    16. [16]

      [16] VARGAS A, MONTOYA J A, MALDONADO C, HERNANDEZ-PEREZ I, ACOSTA D R, MORALES J. Textural properties of Al2O3-TiO2 mixed oxides synthesized by the aqueous sol method[J]. Micropor Mesopor Mater, 2004, 74(1/3): 1-10.

    17. [17]

      [17] 秦朗, 王亚明. 分子筛催化剂的积炭失活原因探讨[J]. 化工时刊, 2004, 18(11): 8-9. (QIN Lang, WANG Ya-ming. Discussion on the causes of coking deactivation of zeolite[J]. Chemical Industry Times, 2004, 18(11): 8-9.)

  • 加载中
    1. [1]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    2. [2]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    3. [3]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    4. [4]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    5. [5]

      Qianqian LiuXing DuWanfei LiWei-Lin DaiBo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-0. doi: 10.3866/PKU.WHXB202311016

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    8. [8]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    11. [11]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    12. [12]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    13. [13]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    14. [14]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    15. [15]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    16. [16]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    17. [17]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    18. [18]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    19. [19]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    20. [20]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

Metrics
  • PDF Downloads(0)
  • Abstract views(486)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return