Citation: ZHAO Xiao-bo, WANG Wen-ju, GUO Xin-wen, WANG Xiang-sheng. Effects of Al2O3 pore structure on FCC gasoline upgrading properties of the nanosized HZSM-5 based catalysts[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(11): 1343-1348. shu

Effects of Al2O3 pore structure on FCC gasoline upgrading properties of the nanosized HZSM-5 based catalysts

  • Corresponding author: ZHAO Xiao-bo, 
  • Received Date: 8 April 2013
    Available Online: 7 June 2013

    Fund Project: 中国石油天然气股份有限公司FCC汽油改质催化剂及工艺研究项目(20090392) (20090392)吉林省教育厅"十二五"科学技术研究项目(吉教科合字[2012]第364号)。 (吉教科合字[2012]第364号)

  • Two Al2O3 supports were characterized by means of NH3-TPD, FT-IR and N2 adsorption-desorption. The characterization results showed that the two Al2O3 supports have no significant differences in their total acidity and acidity strength. The acid sites are mainly Lewis ones, but Al2O3 (b) has larger average pore diameter and pore volume than Al2O3 (a). The influence of the pore structures of the Al2O3 supports on the full range FCC gasoline upgrading performance of the nanosized HZSM-5 based catalysts was investigated in a fixed-bed reactor. The results indicated that the HZSM-5 catalyst extruded with macroporous Al2O3 exhibited superior activity, stability and performance in reducing olefin content of FCC gasoline. The modified nanosized LaNiMo/HZSM-5 catalyst reduced olefin and sulfur concentration in FCC gasoline by about 83% and 87% within 300 h time on stream, respectively, meanwhile the gasoline octane number was preserved.
  • 加载中
    1. [1]

      [1] 杨光福, 王刚, 高金森, 徐春明. FCC汽油低温改质过程的烯烃转化及催化剂积炭[J]. 燃料化学学报, 2007, 35(5): 572-577. (YANG Guang-fu, WANG Gang, GAO Jin-sen, XU Chun-ming. Coke formation and olefins conversion in FCC naphtha olefin reformulation at low reaction temperature[J]. Journal of Fuel Chemistry and Technology, 2007, 35(5): 572-577.)

    2. [2]

      [2] 许友好, 张久顺, 龙军. 生产清洁汽油组分的催化裂化新工MIP[J]. 石油炼制与化工, 2001, 32(8): 1-5. (XU You-hao, HANG Jiu-shun, LONG Jun. A modified FCC process MIP for maximizing iso-paraffins in cracked naphtha[J]. Petroleum Processing and Petrochemicals, 2001, 32(8): 1-5.)

    3. [3]

      [3] 钟孝湘, 张执刚, 黎仕克, 康飚. 催化裂化多产液化气和柴油工艺技术的开发与应用[J]. 石油炼制与化工, 2001, 32(11): 1-5. (ZHONG Xiao-xiang, ZHANG Zhi-gang, LI Shi-ke, KANG Biao. Development and application of MGD technology for producing more LPG and LCO[J]. Petroleum Processing and Petrochemicals, 2001, 32(11): 1-5.)

    4. [4]

      [4] 孟凡东, 王龙延, 郝希仁. 降低催化裂化汽油烯烃技术—FDFCC工艺[J]. 石油炼制与化工, 2004, 35(8): 6-10. (MENG Fan-dong, WANG Long-yan, HAO Xi-ren. Technology for reducing olefin in cracked naphtha-FDFCC process[J]. Petroleum Processing and Petrochemicals, 2004, 35(8): 6-10.)

    5. [5]

      [5] 李大东, 石亚华, 杨清雨. 生产低硫低烯烃汽油的RIDOS技术[J]. 中国工程科学, 2004, 6(4): 1-8. (LI Da-dong, SHI Ya-hua, YANG Qing-yu. Low sulfur low olefin gasoline production by RIDOS technology[J]. Engineering Science, 2004, 6(4): 1-8.)

    6. [6]

      [6] 李明丰, 夏国富, 褚阳, 胡云剑. 催化裂化汽油选择性加氢脱硫催化剂RSDS-1的开发[J]. 石油炼制与化工, 2003, 34(7): 1-4. (LI Ming-feng, XIA Guo-fu, CHU Yang, HU Yun-jian. Preparation of selective hydrodesulfurization catalyst RSDS-1 for FCC naphtha[J]. Petroleum Processing and Petrochemicals, 2003, 34(7): 1-4.)

    7. [7]

      [7] 杨朝合, 山红红, 张建芳. 两段提升管催化裂化系列技术[J]. 炼油技术与工程, 2005, 35(3): 28-33. (YANG Chao-he, SHAN Hong-hong, ZHANG Jian-fang. Two-stage riser FCC technologies[J]. Petroleum Refinery Engineering, 2005, 35(3): 28-33.)

    8. [8]

      [8] ZHANG P Q, WANG X S, GUO X W, GUO H C, ZHAO L P, HU Y K. Characterization of modified nanoscale ZSM-5 zeolite and its application in the olefins reduction in FCC gasoline[J]. Catal Lett, 2004, 92(1/2): 63-68.

    9. [9]

      [9] 胡永康, 赵乐平, 李扬, 周勇, 郭洪臣, 王祥生.纳米ZSM-5沸石在OTA汽油降烯烃技术中的应用[J]. 中国有色金属学报, 2004, 14(1): 317-322. (HU Yong-kang, ZHAO Le-ping, LI Yang, ZHOU Yong, GUO Hong-chen, WANG Xiang-sheng. Development of OTA technology for olefin removal of full range FCC gasoline[J]. The Chinese Journal of Nonferrous Metals, 2004, 14(1): 317-322.)

    10. [10]

      [10] ZHANG P Q, GUO X W, GUO H C, WANG XI S. Study of the performance of modified nano-scale ZSM-5 zeolite on olefins reduction in FCC gasoline[J]. J Mol Catal A: Chem, 2007, 261(2): 139-146.

    11. [11]

      [11] ZHANG P Q, GUO X W, WANG XI S. Characterization of modified nanoscale ZSM-5 catalyst and its application in FCC gasoline upgrading process[J]. Energy Fuels, 2006, 20(4): 1388-1391.

    12. [12]

      [12] 尹双凤, 陈懿, 林洁, 于中伟. Zn/HZSM-5轻烃芳构化催化剂中Zn与分子筛协同作用的研究[J]. 天然气化工, 2001, 26(2): 6-9. (YIN Shuang-feng, CHEN Yi, LIN Jie, YU Zhong-wei. Study on synergistic action between Zn component and HZSM-5 in the Zn/HZSM-5 catalyst for aromatization of light paraffins[J]. Natural Gas Chemical Industry, 2001, 26(2): 6-9.)

    13. [13]

      [13] 吉媛媛, 满毅, 王焕茹, 杨菁. 黏合剂对其ZSM-5分子筛成型物裂解石脑油的影响[J]. 燃料化学学报, 2012, 40(6): 727-731. (JI Yuan-yuan, MAN Yi, WANG Huan-ru, YANG Ji. Influence of adhesive on the performance of extruded ZSM-5 catalysts in naphtha cracking[J]. Journal of Fuel Chemistry and Technology, 2012, 40(6): 727-731.)

    14. [14]

      [14] 王学勤, 王祥生, 郭新闻. 超细颗粒五元环型沸石的制备方法: 中国, 1260126[P]. 2006-06-21. (WANG Xue-qin, WANG Xiang-sheng, GUO Xin-wen. A method on the preparation of superfine particle zeolites with a five-membered ring: CN, 1260126[P]. 2006-06-21.)

    15. [15]

      [15] ZHAO X B, GUO X W, WANG X S. Effect of hydrothermal treatment temperature on FCC gasoline upgrading properties of the modified nanoscale ZSM-5 catalyst[J]. Fuel Process Technol, 2007, 88(3): 237-241.

    16. [16]

      [16] VARGAS A, MONTOYA J A, MALDONADO C, HERNANDEZ-PEREZ I, ACOSTA D R, MORALES J. Textural properties of Al2O3-TiO2 mixed oxides synthesized by the aqueous sol method[J]. Micropor Mesopor Mater, 2004, 74(1/3): 1-10.

    17. [17]

      [17] 秦朗, 王亚明. 分子筛催化剂的积炭失活原因探讨[J]. 化工时刊, 2004, 18(11): 8-9. (QIN Lang, WANG Ya-ming. Discussion on the causes of coking deactivation of zeolite[J]. Chemical Industry Times, 2004, 18(11): 8-9.)

  • 加载中
    1. [1]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    2. [2]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    3. [3]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    4. [4]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    5. [5]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    8. [8]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    11. [11]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    14. [14]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    15. [15]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    16. [16]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    17. [17]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    18. [18]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    19. [19]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    20. [20]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

Metrics
  • PDF Downloads(0)
  • Abstract views(451)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return