Citation:
ZHANG Jun-jiao, LIAO Hang-tao, LU Qiang, ZHANG Yang, DONG Chang-qing. Mechanistic study on low-temperature fast pyrolysis of fructose to produce furfural[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(11): 1303-1309.
-
In the low-temperature fast pyrolysis of fructose to produce 5-hydroxymethyl furfural (HMF), furfural (FF) is formed as an important by-product. In this work, pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) were used to reveal the FF formation mechanism from low-temperature fast pyrolysis of fructose. It was found that both the yield and the relative content of FF increased with increasing pyrolysis temperature up to 350℃, but a further increase in the pyrolysis temperature led to a decrease of the FF. The largest peak area of FF reached as high as 11.6%. Four possible pathways are proposed for production of FF from fructose based on the density functional theory (DFT) calculations. The pathway 2 was found to be the optimal route. In this way, the fructose first underwent a six-membered ring (MR) transition state. Then, the C5-C6 bond broke with a simultaneous dehydration of the H of OH at C6 and the OH at C4 to give a dihydrofuran intermediate species containing C4=C5 double bond together with formaldehyde and water. This dihydrofuran intermediate species transformed to an enol intermediate upon a further dehydration of the OH at C2 and the H at C1 through a 4-MR transition state. Finally, the enol intermediate was transformed into FF through a 6-MR transition state and another dehydration process of the OH at C3 and the enol H at C1.
-
Keywords:
- fructose,
- fast pyrolysis,
- furfural,
- Py-GC/MS,
- density functional theory
-
-
-
[1]
[1] 陆强, 朱锡锋. 利用固体超强酸催化热解纤维素制备左旋葡萄糖酮[J]. 燃料化学学报, 2011, 39(6): 425-431. (LU Qiang, ZHU Xi-feng. Production of levoglucosenone from fast pyrolysis of cellulose catalyzed by solid superacids[J]. Journal of Fuel Chemistry and Technology, 2011, 39(6): 425-431.)
-
[2]
[2] FABBRI D, TORRI C, MANCINI I. Pyrolysis of cellulose catalszed by nanopowder metal oxides: Production and characterisation of a chiral hydroxylactone and its role as building block[J]. Green Chem, 2007, 9(12): 1374-1379.
-
[3]
[3] RUTKOWSKI P. Catalytic effects of copper(Ⅱ) chloride and aluminum chloride on the pyrolytic behavior of cellulose[J]. J Anal Appl Pyrolysis, 2012, 98: 86-97.
-
[4]
[4] THANGALAZHY S, ADHIKARI S, CHATTANTHAN S A, GUPTA R B. Catalytic pyrolysis of green algae for hydrocarbon production using H+ZSM-5 catalyst[J]. Bioresour Technol, 2012, 118: 150-157.
-
[5]
[5] BU Q, LEI H, REN S, WANG L, ZHANG Q, TANG J, RUAN R. Production of phenols and biofuels by catalytic microwave pyrolysis of lignocellulosic biomass[J]. Bioresour Technol, 2012, 108: 274-279.
-
[6]
[6] PISKORZ J, MAJERSKI P, RADLEIN D, VLADARS A, SCOTT D S. Flash pyrolysis of cellulose for production of anhydro-oligomers[J]. J Anal Appl Pyrolysis, 2000, 56(2): 145-166.
-
[7]
[7] LU Q, DONG C Q, ZHANG X M, TIAN H Y, YANG Y P, ZHU X F. Selective fast pyrolysis of biomass impregnated with ZnCl2 to produce furfural: Analytical Py-GC/MS study[J]. J Anal Appl Pyrolysis, 2011, 90(2): 204-212.
-
[8]
[8] BRANCA C, GALGANO A, BLASI C, ESPOSITO M, BLASI C. H2SO4-catalyzed pyrolysis of corncobs[J]. Energy Fuel, 2011, 25(1): 359-369.
-
[9]
[9] WAN Y Q, CHEN P, ZHANG B, YANG C Y, LIU Y H, LIN X Y, RUAN R. Microwave-assisted pyrolysis of biomass: Catalyst to improve product selectivity[J]. J Anal Appl Pyrolysis, 2009, 86(1): 161-167.
-
[10]
[10] PATWARDHAN P R, SATRIO J A, BROWN R C, SHANKS B H. Influence of inorganic salts on the primary pyrolysis products of cellulose[J]. Bioresour Technol, 2010, 101(12): 4646-4655.
-
[11]
[11] LU Q, XIONG W M, LI W Z, GUO Q X, ZHU X F. Catalytic pyrolysis of cellulose with sulfated metal oxides: A promising method for obtaining high yield of light furan compounds[J]. Bioresour Technol, 2009, 100(20): 4871-4876.
-
[12]
[12] 陆强, 廖航涛, 张阳, 张俊姣, 董长青. 果糖低温快速热解制备5-羟甲基糠醛的机理研究[J]. 燃料化学学报, 2013, 41(9): 1070-1076. (LU Qiang, LIAO Hang-tao, ZHANG Yang, ZHANG Jun-jiao, DONG Chang-qing. Mechanism study on low-temperature fast pyrolysis of fructose to produce 5-hydroxymethyl furfural[J]. Journal of Fuel Chemistry and Technology, 2013, 41(9): 1070-1076.)
-
[13]
[13] 黄金保, 刘朝, 曾桂生, 谢宇, 童红, 李伟民. 左旋葡聚糖热解机理的密度泛函理论研究[J]. 燃料化学学报, 2012, 40(7): 807-815. (HUANG Jin-bao, LIU Chao, ZENG Gui-sheng, XIE Yu, TONG Hong, LI Wei-min. A density functional theory study on the mechanism of levoglucosan pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2012, 40(7): 807-815.)
-
[14]
[14] 黄金保, 童红, 曾桂生, 谢宇, 李伟民. 丁醇醛和丁醇酸热解形成CO和CO2机理的密度泛函理论研究[J]. 燃料化学学报, 2012, 40(8): 979-984. (HUANG Jin-bao, TONG Hong, ZENG Gui-sheng, XIE Yu, LI Wei-min. Density functional theory studies on the formation mechanism of CO and CO2 in pyrolysis of hydroxyl butyraldehyde and butyric acid[J]. Journal of Fuel Chemistry and Technology, 2012, 40(8): 979-984.)
-
[15]
[15] ZHANG X L, YANG W H, BLASIAK W. Kinetics of levoglucosan and formaldehyde formation during cellulose pyrolysis process[J]. Fuel, 2012, 96: 383-391.
-
[16]
[16] PAINE J B, PITHAWALLA Y B, NAWORAL J D. Carbohydrate pyrolysis mechanisms from isotopic labeling Part 4. The pyrolysis of D-glucose: The formation of furans[J]. J Anal Appl Pyrolysis, 2008, 83(1): 37-63.
-
[17]
[17] ASSARY R S, CURTISS L A. Comparison of sugar molecule decomposition through glucose and fructose: A high-level quantum chemical study[J]. Energy Fuels, 2011, 26(2): 1344-1352.
-
[18]
[18] TAKU M A, YUKIKO S, MASARU W. Dehydration of D-glucose in high temperature water at pressures up to 80 MPa[J]. J Supercrit Fluid, 2007, 40(3): 381-388.
-
[1]
-
-
-
[1]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[2]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[3]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[4]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[5]
Junqi Wang , Shuai Zhang , Jingjing Ma , Xiangjun Liu , Yayun Ma , Zhimin Fan , Jingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725
-
[6]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[7]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[8]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[9]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[10]
Zhengkun QIN , Zicong PAN , Hui TIAN , Wanyi ZHANG , Mingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429
-
[11]
Di Yang , Jiayi Wei , Hong Zhai , Xin Wang , Taiming Sun , Haole Song , Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023
-
[12]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[13]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[14]
Min Gu , Huiwen Xiong , Liling Liu , Jilie Kong , Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120
-
[15]
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
-
[16]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[17]
Jingjie Tang , Luying Xie , Jiayu Liu , Shangyu Shi , Xinyu Sun , Jiayang Lin , Qikun Yang , Chuan'ang Yu , Zecheng Wang , Yingying Wang , Zengyang Xie . Efficient Rapid Synthesis and Antibacterial Activities of Tosylhydrazones: A Recommended Innovative Chemistry Experiment for Undergraduate Medical University. University Chemistry, 2024, 39(3): 316-326. doi: 10.3866/PKU.DXHX202309091
-
[18]
Shu'e Song , Xiaokui Wang , Yongmei Liu , Wanchun Zhu , Hong Yuan , Fuping Tian , Yunshan Bai , Yunchao Li , Li Wang , Zhongyun Wu , Yuan Chun , Jianrong Zhang , Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Viscosity, Density and Optical Properties. University Chemistry, 2025, 40(5): 148-156. doi: 10.12461/PKU.DXHX202503026
-
[19]
Yahui HAN , Jinjin ZHAO , Ning REN , Jianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395
-
[20]
Xinyue Han , Yunhan Yang , Jiayin Lu , Yuxiang Lin , Dongxue Zhang , Ling Lin , Liang Qiao . Efficient serum lipids profiling by TiO2-dopamin-assisted MALDI-TOF MS for breast cancer detection. Chinese Chemical Letters, 2025, 36(5): 110183-. doi: 10.1016/j.cclet.2024.110183
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(434)
- HTML views(51)