Citation: ZHANG Jun-jiao, LIAO Hang-tao, LU Qiang, ZHANG Yang, DONG Chang-qing. Mechanistic study on low-temperature fast pyrolysis of fructose to produce furfural[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(11): 1303-1309. shu

Mechanistic study on low-temperature fast pyrolysis of fructose to produce furfural

  • Corresponding author: LU Qiang, 
  • Received Date: 26 February 2013
    Available Online: 13 May 2013

    Fund Project: 国家自然科学基金(51276062,51106052) (51276062,51106052)国家科技支撑计划(2012BAD30B01)。 (2012BAD30B01)

  • In the low-temperature fast pyrolysis of fructose to produce 5-hydroxymethyl furfural (HMF), furfural (FF) is formed as an important by-product. In this work, pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) were used to reveal the FF formation mechanism from low-temperature fast pyrolysis of fructose. It was found that both the yield and the relative content of FF increased with increasing pyrolysis temperature up to 350℃, but a further increase in the pyrolysis temperature led to a decrease of the FF. The largest peak area of FF reached as high as 11.6%. Four possible pathways are proposed for production of FF from fructose based on the density functional theory (DFT) calculations. The pathway 2 was found to be the optimal route. In this way, the fructose first underwent a six-membered ring (MR) transition state. Then, the C5-C6 bond broke with a simultaneous dehydration of the H of OH at C6 and the OH at C4 to give a dihydrofuran intermediate species containing C4=C5 double bond together with formaldehyde and water. This dihydrofuran intermediate species transformed to an enol intermediate upon a further dehydration of the OH at C2 and the H at C1 through a 4-MR transition state. Finally, the enol intermediate was transformed into FF through a 6-MR transition state and another dehydration process of the OH at C3 and the enol H at C1.
  • 加载中
    1. [1]

      [1] 陆强, 朱锡锋. 利用固体超强酸催化热解纤维素制备左旋葡萄糖酮[J]. 燃料化学学报, 2011, 39(6): 425-431. (LU Qiang, ZHU Xi-feng. Production of levoglucosenone from fast pyrolysis of cellulose catalyzed by solid superacids[J]. Journal of Fuel Chemistry and Technology, 2011, 39(6): 425-431.)

    2. [2]

      [2] FABBRI D, TORRI C, MANCINI I. Pyrolysis of cellulose catalszed by nanopowder metal oxides: Production and characterisation of a chiral hydroxylactone and its role as building block[J]. Green Chem, 2007, 9(12): 1374-1379.

    3. [3]

      [3] RUTKOWSKI P. Catalytic effects of copper(Ⅱ) chloride and aluminum chloride on the pyrolytic behavior of cellulose[J]. J Anal Appl Pyrolysis, 2012, 98: 86-97.

    4. [4]

      [4] THANGALAZHY S, ADHIKARI S, CHATTANTHAN S A, GUPTA R B. Catalytic pyrolysis of green algae for hydrocarbon production using H+ZSM-5 catalyst[J]. Bioresour Technol, 2012, 118: 150-157.

    5. [5]

      [5] BU Q, LEI H, REN S, WANG L, ZHANG Q, TANG J, RUAN R. Production of phenols and biofuels by catalytic microwave pyrolysis of lignocellulosic biomass[J]. Bioresour Technol, 2012, 108: 274-279.

    6. [6]

      [6] PISKORZ J, MAJERSKI P, RADLEIN D, VLADARS A, SCOTT D S. Flash pyrolysis of cellulose for production of anhydro-oligomers[J]. J Anal Appl Pyrolysis, 2000, 56(2): 145-166.

    7. [7]

      [7] LU Q, DONG C Q, ZHANG X M, TIAN H Y, YANG Y P, ZHU X F. Selective fast pyrolysis of biomass impregnated with ZnCl2 to produce furfural: Analytical Py-GC/MS study[J]. J Anal Appl Pyrolysis, 2011, 90(2): 204-212.

    8. [8]

      [8] BRANCA C, GALGANO A, BLASI C, ESPOSITO M, BLASI C. H2SO4-catalyzed pyrolysis of corncobs[J]. Energy Fuel, 2011, 25(1): 359-369.

    9. [9]

      [9] WAN Y Q, CHEN P, ZHANG B, YANG C Y, LIU Y H, LIN X Y, RUAN R. Microwave-assisted pyrolysis of biomass: Catalyst to improve product selectivity[J]. J Anal Appl Pyrolysis, 2009, 86(1): 161-167.

    10. [10]

      [10] PATWARDHAN P R, SATRIO J A, BROWN R C, SHANKS B H. Influence of inorganic salts on the primary pyrolysis products of cellulose[J]. Bioresour Technol, 2010, 101(12): 4646-4655.

    11. [11]

      [11] LU Q, XIONG W M, LI W Z, GUO Q X, ZHU X F. Catalytic pyrolysis of cellulose with sulfated metal oxides: A promising method for obtaining high yield of light furan compounds[J]. Bioresour Technol, 2009, 100(20): 4871-4876.

    12. [12]

      [12] 陆强, 廖航涛, 张阳, 张俊姣, 董长青. 果糖低温快速热解制备5-羟甲基糠醛的机理研究[J]. 燃料化学学报, 2013, 41(9): 1070-1076. (LU Qiang, LIAO Hang-tao, ZHANG Yang, ZHANG Jun-jiao, DONG Chang-qing. Mechanism study on low-temperature fast pyrolysis of fructose to produce 5-hydroxymethyl furfural[J]. Journal of Fuel Chemistry and Technology, 2013, 41(9): 1070-1076.)

    13. [13]

      [13] 黄金保, 刘朝, 曾桂生, 谢宇, 童红, 李伟民. 左旋葡聚糖热解机理的密度泛函理论研究[J]. 燃料化学学报, 2012, 40(7): 807-815. (HUANG Jin-bao, LIU Chao, ZENG Gui-sheng, XIE Yu, TONG Hong, LI Wei-min. A density functional theory study on the mechanism of levoglucosan pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2012, 40(7): 807-815.)

    14. [14]

      [14] 黄金保, 童红, 曾桂生, 谢宇, 李伟民. 丁醇醛和丁醇酸热解形成CO和CO2机理的密度泛函理论研究[J]. 燃料化学学报, 2012, 40(8): 979-984. (HUANG Jin-bao, TONG Hong, ZENG Gui-sheng, XIE Yu, LI Wei-min. Density functional theory studies on the formation mechanism of CO and CO2 in pyrolysis of hydroxyl butyraldehyde and butyric acid[J]. Journal of Fuel Chemistry and Technology, 2012, 40(8): 979-984.)

    15. [15]

      [15] ZHANG X L, YANG W H, BLASIAK W. Kinetics of levoglucosan and formaldehyde formation during cellulose pyrolysis process[J]. Fuel, 2012, 96: 383-391.

    16. [16]

      [16] PAINE J B, PITHAWALLA Y B, NAWORAL J D. Carbohydrate pyrolysis mechanisms from isotopic labeling Part 4. The pyrolysis of D-glucose: The formation of furans[J]. J Anal Appl Pyrolysis, 2008, 83(1): 37-63.

    17. [17]

      [17] ASSARY R S, CURTISS L A. Comparison of sugar molecule decomposition through glucose and fructose: A high-level quantum chemical study[J]. Energy Fuels, 2011, 26(2): 1344-1352.

    18. [18]

      [18] TAKU M A, YUKIKO S, MASARU W. Dehydration of D-glucose in high temperature water at pressures up to 80 MPa[J]. J Supercrit Fluid, 2007, 40(3): 381-388.

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    5. [5]

      Junqi WangShuai ZhangJingjing MaXiangjun LiuYayun MaZhimin FanJingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725

    6. [6]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    7. [7]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    8. [8]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    9. [9]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    10. [10]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    11. [11]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    14. [14]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    15. [15]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    16. [16]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    17. [17]

      Jingjie Tang Luying Xie Jiayu Liu Shangyu Shi Xinyu Sun Jiayang Lin Qikun Yang Chuan'ang Yu Zecheng Wang Yingying Wang Zengyang Xie . Efficient Rapid Synthesis and Antibacterial Activities of Tosylhydrazones: A Recommended Innovative Chemistry Experiment for Undergraduate Medical University. University Chemistry, 2024, 39(3): 316-326. doi: 10.3866/PKU.DXHX202309091

    18. [18]

      Shu'e Song Xiaokui Wang Yongmei Liu Wanchun Zhu Hong Yuan Fuping Tian Yunshan Bai Yunchao Li Li Wang Zhongyun Wu Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Viscosity, Density and Optical Properties. University Chemistry, 2025, 40(5): 148-156. doi: 10.12461/PKU.DXHX202503026

    19. [19]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    20. [20]

      Xinyue HanYunhan YangJiayin LuYuxiang LinDongxue ZhangLing LinLiang Qiao . Efficient serum lipids profiling by TiO2-dopamin-assisted MALDI-TOF MS for breast cancer detection. Chinese Chemical Letters, 2025, 36(5): 110183-. doi: 10.1016/j.cclet.2024.110183

Metrics
  • PDF Downloads(0)
  • Abstract views(435)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return