Citation: ZHANG Li, ZENG Fan-gui, XIANG Jian-hua. Macromolecular structure and formation mechanism of raw coal in coal seam 11 of Wumuchang district, Inner Mongolia[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(11): 1294-1302. shu

Macromolecular structure and formation mechanism of raw coal in coal seam 11 of Wumuchang district, Inner Mongolia

  • Corresponding author: ZENG Fan-gui, 
  • Received Date: 26 December 2012
    Available Online: 19 February 2013

    Fund Project: 国家自然科学基金(41072116, 40772097, 40572094, 41102092) (41072116, 40772097, 40572094, 41102092)高等学校博士学科点专项科研基金(20091402110002) (20091402110002)2012太原市科技项目(120247-27)。 (120247-27)

  • Based on the results of proximate analysis, elemental analysis, 13C-NMR, FT-IR and XPS results, the structure model of the raw coal in coal seam 11 of Wumuchang district, Yimin Basin of Hulun Buir, Inner Mongolia was built using ACD/lab software. The 13C-NMR predicting software ACD/CNMR predictor was used to modify the structure. The macromolecule structure model which coincides with the nuclear magnetic resonance map is achieved. The characteristics of structures of macromolecules are as follows. Benzene, naphthalene, anthracene and phenanthrene are aromatic constitutional units, the quantities are 1, 2, 2, 1 respectively. Ether linkages, hydrogen aromatic rings and ortho methylene are bridges connecting aromatic units. Oxygen atoms exist in forms of phenolic hydroxyl groups, the quantities are 7, 3, 2 respectively. Nitrogen atoms exist in forms of pyridine and pyrrole. Methyl and short fatty chains are distributed in the edges of aromatic rings. The coal structure is compared with lignite in nearby mining area and Shendong long flame coal with similar metamorphic grade. In the environment of high temperature and low pressure, oxygen containing functional groups are lost rapidly in the process of thermal revolution, leading to the formation of short chain aliphatic groups. The environment of low pressure during thermal revolution is benefit with escape of micro molecules, leading to the aggregation of free radicals, so that large aromatic structure units are formed. However, due to the steric effect caused by the linear chain aliphatic groups, the orientation arrangement of aromatic structure units is not favored, leading to the phenomenon that the maturation of chemical components occurs before that of coal structure.
  • 加载中
    1. [1]

      [1] 柳滨. 伊敏煤田WMC区烟煤成因研究报告[R]. 哈尔滨: 东煤哈尔滨科研所, 1988. (LIU Bin. The research report on the origin of bituminous coal in Yiming Wumuchang coal[R]. Harbin: Eastern Coal Harbin Institute, 1988.)

    2. [2]

      [2] 陈冰冰, 池海. 伊敏无牧场区煤质特征及变质规律[J]. 中国煤田地质, 2005, 17(5): 34-35. (CHEN Bing-bing, CHI Hai. Coal quality characters and metamorphic pattern in Wumuchang area, Yimin[J]. Coal Geology of China, 2005, 17(5): 34-35.)

    3. [3]

      [3] 许云秋, 刘金钟. 岩浆热作用下有机质化学成分超前成熟[J]. 中国矿业大学学报, 1989, 18(2): 42-52. (XU Yun-qiu, LIU Jin-zhong. The pre-maturation of the chemical composition compared with texture in organic matter underthe magmatic thermalism[J]. Journal of China University of Mining & Technology, 1989, 18(2): 42-52.)

    4. [4]

      [4] 顾永达, 相宏伟. 伊敏煤田WMC矿区煤中多环芳烃分布特征[J]. 燃料化学学报, 1996, 8(24): 335-340. (GU Yong-da, XIANG Hong-wei. Distribution pattern of polycyclic aromatic hydrocarbons in Yiming Wumuchang coal[J]. Journal of Fuel Chemistry and Technology, 1996, 8(24): 335-340.)

    5. [5]

      [5] 彭志龙. 金属离子在煤结构中赋存形态的分子模拟[D]. 太原理工大学, 太原理工大学地质系, 2012. (PENG Zhi-long. The molecular simulation of the combined forms of metal ions in coal structure[D]. The Department of Geology, Taiyuan University of Technology, 2012.)

    6. [6]

      [6] 贾建波, 曾凡桂. 神东2-2_煤镜质组大分子结构模型 13C-NMR谱的构建与修正[J]. 燃料化学学报, 2011, 9(39): 653-657. (JIA Jian-bo, ZENG Fan-gui. Construction and modification of macromolecular structure model for vitrinite from Shendong 2-2 coal[J]. Journal of Fuel Chemistry and Technology, 2011, 9(39): 653-657.)

    7. [7]

      [7] THOMAS S, BRUHL I, Heilmann D, Kleinpeter E. 13CNMR chemical shift calculations for some substituted pyridines: A comparative consideration[J]. J Chem Inf Comput Sci, 1997, 37(4): 726-730.

    8. [8]

      [8] KAWASHIMA H, TAKANOHASHI T. Modification of model structures of upper report coal extracts using 13C NMR chemical shift calculations[J]. Energy Fuels, 2001, 15(3): 591-598.

    9. [9]

      [9] TAKANOHASHI T, IINO M. Simulation of interaction of coal associates with solvents using the molecular dynamics calculation[J]. Energy Fuels, 1998, 12(6): 1168-1173.

    10. [10]

      [10] TAKANOHASHI T, KAWASHIMA H. Construction of a model structure for upper Freeport coal using 13C NMR chemical shift calculations[J]. Energy Fuels, 2002, 16(2): 379-387.

    11. [11]

      [11] KOZLOWSKI M. XPS study of reductively and non-reductively modified coals[J]. Fuel, 2004, 83(3): 259-265.

    12. [12]

      [12] GRZYBEK T, PIETRZAK R, WACHOWSKA H. X-ray photoelectron spectroscopy study of oxidized coals with different sulphur content[J]. Fuel Process Technol, 2002, 77-78: 1-7.

    13. [13]

      [13] GARDNER S D, SINGAMSETTY C S K, BOOTH G L, HE G R, PITTMAN JR C U. Surface characterization of carbon fibers using angle-resolved XPS and ISS[J]. Carbon, 1995, 33(5): 587-595.

    14. [14]

      [14] 徐秀峰, 张蓬洲. 用XPS表征氧、氮、硫元素的存在形态[J]. 煤炭转化, 1996, 19(1): 73-77. (XU Xiu-feng, ZHANG Peng-zhou. The XPS study of forms of oxygen, nitrogen and sulphur elements in gas coal[J]. Coal Conversion, 1996, 19(1): 73-77.)

    15. [15]

      [15] 彭立才, 韩德馨, 邵文斌, 刘青文. 柴达木盆地北缘侏罗系烃源岩干酪根 13C 核磁共振研究[J]. 石油学报, 2002, 23(2): 34-37. (PENG Li-cai, HAN De-xin, SHAO Wen-bin, LIU Qing-wen. 13C NMR research on the kerogens of jurassic hydrocabon source rock in the northen edge, Qaidam Basin[J]. Acta Petrolei Sinica, 2002, 23(2): 34-37.)

    16. [16]

      [16] 郑昀辉, 戴中蜀. 用NMR研究低温热处理对低煤化度煤化学组成结构的影响[J]. 煤炭转化, 1997, 20(4): 54-59. (ZHENG Jun-hui, DAI Zhong-shu. Using NMR to research the influence of low temperature pyrolysis on the chemical component and structure of low rank coal[J]. Coal Conversion, 1997, 20(4): 54-59.)

    17. [17]

      [17] TREWHELLA M J, POPLETT L J F, GRINT A. Structure of Green River oil shale kerogen: Determination using solid state 13C-NMR spectroscopy[J]. Fuel, 1986, 65(4): 541-546.

    18. [18]

      [18] 王丽, 张蓬洲, 郑敏. 用固体核磁共振和电子能谱研究我国高硫煤的结构[J]. 燃料化学学报, 1996, 24(6): 539-543. (WANG Li, ZHANG Peng-zhou, ZHENG Min. Study on structural characterization of three Chinese coals of high organic sulphur content using XPS and solid-state NMR spectrescopy[J]. Journal of Fuel Chemistry and Technology, 1996, 24(6): 539-543.)

    19. [19]

      [19] 谢克昌. 煤的结构性与反应性[M]. 北京: 科学出版社, 2002: 70-75. (XIE Ke-chang. The structure and reactivity of coal[M]. Beijing: Science Press, 2002: 73-75.)

    20. [20]

      [20] VANDENBROUCKE M, LARGEAU C. Kerogen origin, Evolution and Structure[J]. Org Geochem, 2007, 38(5): 719-833.

    21. [21]

      [21] DESIMONI E, CASELLA G I, MORONE A, SALVI A M. XPS determination of oxygen-containing functional groups on carbon-fibre surfaces and the cleaning of these surfaces[J]. Surf Interface Anal, 1990, 15(10): 627-634.

    22. [22]

      [22] WANGER C D, RIGGS W M, DAVIS L E, MOULDER J F. A reference book of standard data for use in X-ray photoelectron spectroscopy[M]. Perkin-Elmer, Eden-Prairie, 1979.

    23. [23]

      [23] SHINN J H. From coal to single stage and two-stage products: A reactive model of coal structure[J]. Fuel, 1984, 63(9): 1187-1196.

    24. [24]

      [24] 王生维. 伊敏盆地五牧场煤变质作用及煤层气地质特征研究[J]. 中国煤田地质, 1996, 8(4): 34-37. (WANG Sheng-wei. Metamorphism of coal and coal bed methane in wumuchang, Yimin basin[J]. Coal Geology of China, 1996, 8(4): 34-37.)

  • 加载中
    1. [1]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    2. [2]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    3. [3]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    4. [4]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    5. [5]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    6. [6]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    7. [7]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    8. [8]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    9. [9]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    10. [10]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    11. [11]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    12. [12]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    13. [13]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    14. [14]

      Yuan Chun Yongmei Liu Fuping Tian Hong Yuan Shu'e Song Wanchun Zhu Yunchao Li Zhongyun Wu Xiaokui Wang Yunshan Bai Li Wang Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053

    15. [15]

      Yan Liu Xiaojun Han Ping Xu Guoxu Zhang Yu Wang Zhicheng Zhang Dianpeng Qi . “Five Measures” Based Science and Education Integration Experimental Teaching Mode to Promote the Construction of “Specialized Experiment” Curriculum. University Chemistry, 2024, 39(10): 299-307. doi: 10.12461/PKU.DXHX202405002

    16. [16]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    17. [17]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    18. [18]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    19. [19]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    20. [20]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

Metrics
  • PDF Downloads(0)
  • Abstract views(1126)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return