Citation: LI Mei, YANG Jun-he, ZHANG Qi-feng, CHANG Hai-zhou, SUN Hui. XPS study on transformation of N- and S-functional groups during pyrolysis of high sulfur New Zealand coal[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(11): 1287-1293. shu

XPS study on transformation of N- and S-functional groups during pyrolysis of high sulfur New Zealand coal

  • Corresponding author: YANG Jun-he, 
  • Received Date: 22 April 2013
    Available Online: 4 June 2013

    Fund Project: 国家自然科学基金(21276156)。 (21276156)

  • X-ray photoelectron spectroscopy (XPS) was used to investigate the nitrogen and sulfur functional forms present in New Zealand coal (NXL) and its pyrolysis char prepared under argon atmosphere at 8 different temperatures between 300 and 1 000℃. The N 1s spectra obtained were curve-resolved into 4 peaks: pyridinic-N (398.8±0.4 eV), pyrrolic-N (400.2±0.3 eV), quaternary-N (401.4±0.3 eV) and nitrogen oxides (402.9±0.5 eV); and S 2p peaks into 6 peaks: pyrite (162.5±0.3 eV), sulphidic (163.3±0.4 eV), thiophenic (164.1±0.2 eV), sulfoxide (166.0±0.5 eV), sulfones (168.0±0.5 eV) and sulfate (169.5±0.5 eV). The results show that nitrogen present in coal in pyrrolic forms is converted into pyridinic functionalities upon heat treatment and nitrogen oxides disappeared above 900℃. The major organic sulfur form in NXL is thiophene and its content is over 50%. Pyrite is decomposed completely into troilite at 600℃.
  • 加载中
    1. [1]

      [1] GONG B, BUCKLEY A N, LAMB R N, NELSON P F. XPS determination of the forms of nitrogen in coal pyrolysis chars[J]. Sur Int Anal, 1999, 28(1): 126-130.

    2. [2]

      [2] GORBATY M L, KELEMEN S R. Characterization and reactivity of organically bound sulfur and nitrogen fossil fuels[J]. Fuel Process Technol, 2001, 71(1/3): 71-78.

    3. [3]

      [3] KELEMEN S R, GORBATY M L, KWIATEK P J. Quantification of nitrogen forms in Argonne Premium coals[J]. Energy Fuels, 1994, 8(4): 896-906.

    4. [4]

      [4] 常海洲, 王传格, 曾凡桂, 李军, 李文英, 谢克昌. 不同还原程度煤显微组分组表面结构XPS对比分析[J]. 燃料化学学报, 2006, 34(4): 389-394. (CHANG Hai-zhou, WANG Chuan-ge, ZENG Fan-gui, LI Jun, LI Wen-ying, XIE Ke-chang. XPS comparative analysis of coal macerals with different reducibility[J]. Journal of Fuel Chemistry and Technology, 2006, 34(4): 389-394.)

    5. [5]

      [5] 刘艳华, 车得福, 徐通模. 利用X射线光电子能谱确定煤及其残焦中硫的形态[J]. 西安交通大学学报, 2004, 38(1): 101-104. (LIU Yan-hua, CHE De-fu, XU Tong-mo. X-Ray photoelectron spectroscopy determination of the forms of sulfur in coal and its chars[J]. Journal of Xi'an JiaoTong University, 2004, 38(1): 101-104.)

    6. [6]

      [6] WOJTOWICZ M A, PELS J R, MOULIJN J A. The fate of nitrogen functionalities in coal during pyrolysis and combustion[J]. Fuel, 1995, 74(4): 507-516.

    7. [7]

      [7] SCHMIERS H, FRIEBEL J, STREUBEL P, HESSE R, KOPSEL R. Change of chemical bonding of nitrogen of polymeric N-heterocyclic compounds during pyrolysis[J]. Carbon, 1999, 37(12): 1965-1978.

    8. [8]

      [8] KAMBARA S, TAKARADA T, YAMAMOTO Y, KATO K. Relation between functional forms of coal nitrogen and formation of nitrogen oxide (NOx) precursors during rapid pyrolysis[J]. Energy Fuels, 1993, 7(6): 1013-1020.

    9. [9]

      [9] KAMBARA S, TAKARADA T, TOYOSHIMA M, KATO K. Relation between functional forms of coal nitrogen and NOx emissions from pulverized coal combustion[J]. Fuel, 1995, 74(9): 1247-1253.

    10. [10]

      [10] KOZLOWSKI M. XPS study of reductively and non-reductively modified coals[J]. Fuel, 2004, 83(3): 259-265.

    11. [11]

      [11] KELEMEN S R, GEORGE G N, GORBATY M L. Direct determination and quantification of sulphur forms in heavy petroleum and coals: 1.The X-ray photoelectron spectroscopy (XPS) approach[J]. Fuel, 1990, 69(8): 939-944.

    12. [12]

      [12] ZHANG Y C, ZHANG J, SHENG C D, CHEN J, LIU Y X, ZHAO L, XIE F. X-ray photoelectron spectroscopy(XPS) investigation of nitrogen functionalities during coal char combustion in O2/CO2 and O2/Ar atmospheres[J]. Energy Fuels, 2011, 25(1): 240-245.

    13. [13]

      [13] PIETRZAK R, GRZYBEK T, WACHOWSKA H. XPS study of pyrite-free coals subjected to different oxidizing agents[J]. Fuel, 2007, 86(16): 2616-2624.

    14. [14]

      [14] CHEN H K, LI B Q, YANG J L, ZHANG B J. Transformation of sulfur during pyrolysis and hydropyrolysis of coal[J]. Fuel, 1998, 77(6): 487-493.

    15. [15]

      [15] NELSON P F, KELLY M D, WORNAT M J. Conversion of fuel nitrogen in coal volatiles to NOx precursors under rapid heating conditions[J]. Fuel, 1991, 70(3): 403-407.

    16. [16]

      [16] 姚明宇, 刘艳华, 车得福. 宜宾煤中氮的形态及其变迁规律研究[J]. 西安交通大学学报, 2003, 37(7): 759-763. (YAO Ming-yu, LIU Yan-hua, CHE De-fu. Investigation of nitrogen functionality in Yibin coal and its char[J]. Journal of Xi'an Jiaotong University, 2003, 37(7): 759-763.)

    17. [17]

      [17] 刘海明, 张军营, 郑楚光, 孟韵. 煤中吡咯型和吡啶型氮热解稳定性研究[J]. 华中科技大学学报(自然科学版), 2004, 32(11): 13-15. (LIU Hai-ming, ZHANG Jun-ying, ZHENG Chu-guang, MENG Yun. Quantum chemical study of the pyrolysis stability of pyrrolic nitrogen and pyridinic nitrogen in coal[J]. Journal of Huazhong University of Science & Technology(Nature Science Edition), 2004, 32(11): 13-15.)

    18. [18]

      [18] YOSHIHIKO N, DONG Z B. Theoretical study on the thermal decomposition of pyridine[J]. Fuel, 2000, 79(3/4): 449-457.

    19. [19]

      [19] LIU F R, LI W, CHEN H K, LI B Q. Uneven distribution of sulfurs and their transformation during coal pyrolysis[J]. Fuel, 2007, 86(3): 360-366.

    20. [20]

      [20] ALVAREZ R, CLEMENTE C, GOMEZ-LIMON D. The influence of nitric acid oxidation of low rank coal and its impact on coal structure[J]. Fuel, 2003, 82(15/17): 2007-2015.

    21. [21]

      [21] GRYGLEWICZ G, WILK P, YPERMAN J, FRANCO D V, MAES I I, MULLENS J, VAN POUCKE L C. Interaction of the organic matrix with pyrite during pyrolysis of a high-sulfur bituminous coal[J]. Fuel, 1996, 75(13): 1499-1504.

  • 加载中
    1. [1]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    2. [2]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    3. [3]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    4. [4]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    5. [5]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    6. [6]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    7. [7]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    8. [8]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    9. [9]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    10. [10]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    11. [11]

      Weikang Wang Yadong Wu Jianjun Zhang Kai Meng Jinhe Li Lele Wang Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093

    12. [12]

      Yiming Liang Ziyan Pan Kin Shing Chan . One Drink, Two Tears in the Central Nervous System: The Perils of Disulfiram-Like Reactions. University Chemistry, 2025, 40(4): 322-325. doi: 10.12461/PKU.DXHX202406016

    13. [13]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    14. [14]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    15. [15]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    16. [16]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    17. [17]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    18. [18]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    19. [19]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    20. [20]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

Metrics
  • PDF Downloads(0)
  • Abstract views(878)
  • HTML views(125)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return