Citation: KONG Jiao, CHENG Zhu, DONG Jie, JIAO Hai-li, LI Fan. Release of PAHs during pyrolysis of Pingshuo coal[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(11): 1281-1286. shu

Release of PAHs during pyrolysis of Pingshuo coal

  • Corresponding author: LI Fan, 
  • Received Date: 14 March 2013
    Available Online: 26 May 2013

    Fund Project: 国家自然科学基金(20876103) (20876103)山西省自然科学基金(2008011023)。 (2008011023)

  • A flash pyroprobe combined with GC-MS was used to investigate the effects of temperature on the release property of PAHs (polycyclic aromatic hydrocarbons) during pyrolysis of Pingshuo coal. The formation mechanism of PAHs was also discussed. The results indicate that the total amounts of the 16 PAHs released increase obviously with increasing temperature during pyrolysis, reach the maximum at 800℃, and then decrease. The ring distributions of PAHs have a notable dependence on the pyrolysis temperature. The different species of PAHs reaches the maximum yields at individual temperature. With increase in pyrolysis temperature, the total amount of PAHs increase observably, which is attributed to cracking of the bridge bonds, the fat side chain on aromatic ring, the methyl and phenolic group in the coal macrostructure. With further increase to 1 000 and 1 200℃, the amount of high-ring PAHs increases due to the occurrence of condensation reaction. Thermal cracking of macromolecular compounds concentrated during 600~800℃, and condensation are the main reactions occurred at high temperatures. The PAHs during coal pyrolysis are generated from the volatilization of aromatics structure in coal, the cracking reactions of macromolecular compounds and the condensation reactions of radicals at high temperature; meanwhile, the last one is the major source of high-ring PAHs during coal pyrolysis.
  • 加载中
    1. [1]

      [1] 谢克昌. 煤的结构与反应性[M]. 北京: 科学出版社, 2002. (XIE Ke-chang. Coal structure and its reactivity[M]. Beijing: Science Press, 2002.)

    2. [2]

      [2] 赵文昌, 程金平, 谢海赟, 马英歌, 王文华. 环境中多环芳烃(PAHs)的来源与监测分析方法[J]. 环境科学与技术, 2006, 29(3): 105-107. (ZHAO Wen-chang, CHENG Jin-ping, XIE Hai-yun, MA Ying-ge, WANG Wen-hua. PAHs: sources, pathway and their monitoring and analysis[J]. Environmental Science & Technology, 2006, 29(3): 105-107.)

    3. [3]

      [3] 刘淑琴, 靳志伟, 张尚军. 大尺度煤热解多环芳烃生成及排放规律[J]. 煤炭学报, 2012, 37(6): 1039-1045. (LIU Shu-qin, JIN Zhi-wei, ZHANG Shang-jun. Formation and distribution of polycyclic aromatic hydrocarbons during large size coal pyrolysis[J]. Journal of China Coal Society, 2012, 37(6): 1039-1045.)

    4. [4]

      [4] 王连生. 有机污染化学[M]. 北京: 高等教育出版社, 2004. (WANG Lian-sheng. Chemistry of organic pollution[M]. Beijing: Higher Education Press, 2004.)

    5. [5]

      [5] 戴朝霞, 陈振翔, 王格慧, 王连生. 典型城市大气颗粒物中多环芳烃的污染研究[J]. 环境科学与技术, 2006, 29(2): 29-31. (DAI Zhao-xia, CHEN Zhen-xiang, WANG Ge-hui, WANG Lian-sheng. Study on polycyclic aromatic hydrocarbons in aerosol of representative cities[J]. Environmental Science and Technology, 2006, 29(2): 29-31.)

    6. [6]

      [6] 许士奋, 蒋新, 汪涟生, 全燮, MARTENS D. 长江和辽河沉积物中的多环芳烃类污染物[J]. 中国环境科学, 2000, 20(2): 128-131. (XU Shi-fen, JIANG Xin, WANG Lian-sheng, QUAN Xie, MARTENS D. Polycyclic aromatic hydrecarbons (PAHs) pollutants in sediments of the Yangtse river and the Liaohe river [J]. China Environmental Science, 2000, 20(2): 128-131.)

    7. [7]

      [7] 刘大锰, 刘志华, 李运勇. 煤中有害物质及其对环境的影响研究进展[J]. 地球科学进展, 2002, 17(6): 840-847. (LIU Da-meng, LIU Zhi-hua, LI Yun-yong. Advances in studies of harmful substances in coal and their impact on the environment[J]. Advance In Earth Sciences, 2002, 17(6): 840-847.)

    8. [8]

      [8] 董洁, 李凡, 谢克昌. 煤转化过程中多环芳烃排放的研究现状[J]. 现代化工, 2009, 29(S1): 344-346. (DONG Jie, LI Fan, XIE Ke-chang. Progress in formation of polycyclic aromatic hydrocarbons during coal conversion process[J]. Modern Chemical Industry, 2009, 29(S1): 344-346.)

    9. [9]

      [9] 何选明, 黄鹂, 韩军, 李振东, 李耀拉. 炼焦煤中多环芳烃的分布特性研究[J]. 煤炭转化, 2009, 32(4): 70-73. (HE Xuan-ming, HUANG Li, HAN Jun, LI Zhen-dong, LI Yao-la. Distribution characteristic of polycyclic aromatic hydrocarbons in coking coal[J]. Coal Conversion, 2009, 32(4): 70-73.)

    10. [10]

      [10] 刘淑琴, 庞旭林, 王媛媛, 张尚军, 鲍鹏程, 党金莉. 不同煤种热解多环芳烃的生成分布特征研究[J]. 煤炭转化, 2011, 34(1): 1-6. (LIU Shu-qin, PANG Xu-lin, WANG Yuan-yuan, ZHANG Shang-jun, BAO Peng-cheng, DANG Jin-li. Study on the distribution characteristic of polycyclic aromatic hydrocarbons during pyrolysis of different ranks of coal[J]. Coal Conversion, 2011, 34(1): 1-6.)

    11. [11]

      [11] 孙庆雷, 李文, 陈皓侃, 李保庆. 神木煤显微组分热解和加氢热解的焦油组成[J]. 燃料化学学报, 2005, 33(4): 412-415. (SUN Qing-lei, LI Wen, CHEN Hao-kan, LI Bao-qing. Compositions of coal tar from pyrolysis and hydropyrolysis of Shenmu coalmacerals[J]. Journal of Fuel Chemistry and Technology, 2005, 33(4): 412-415.)

    12. [12]

      [12] DONG J, LI F, XIE K C. Study on the source of polycyclic aromatic hydrocarbons (PAHs) during coal pyrolysis by PY-GC-MS[J]. J Hazard Mater, 2012, 243: 80-85.

    13. [13]

      [13] 罗孝俊. 珠江三角洲河流、河口和邻近南海海域水体和沉积物中多环芳烃和有机氯农药研究[D]. 广州: 中国科学院广州地球化学研究所, 2004. (LUO Xiao-jun. A study of PAHs and OCPs on water body and sediments of rivers in pearl river delta, pearl river estuary and offshore of south China sea[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2004.)

    14. [14]

      [14] DI NOLA G, DE JONG W, SPLIETHOFF H. TG-FTIR characterization of coal and biomass single fuels and blends under slow heating rate conditions: Partitioning of the fuel-bound nitrogen[J]. Fuel Process Technol, 2010, 91(1): 103-115.

    15. [15]

      [15] 焦海丽. 原煤中可抽提多环芳烃(PAHs)及其热解特性[D]. 太原: 太原理工大学, 2010. (JIAO Hai-li. The PAHs in the raw coal extracts and their pyrolysis properties[D]. Taiyuan: Taiyuan University of Technology, 2010.)

    16. [16]

      [16] 高晋生. 煤的热解、炼焦和煤焦油加工[M]. 北京: 化学工业出版社, 2010. (GAO Jin-sheng. Coal pyrolysis,coking and coal tar processing[M]. Beijing: Chemical Industry Press, 2010.)

    17. [17]

      [17] 尤孝方. 燃烧过程中多环芳烃的生成与数值模拟[D]. 浙江: 浙江大学, 2006. (YOU Xiao-fang. The formation of polycyclic aromatic hydrocarbons (PAHs) from combustion processes and its modelling[D]. Zhejiang: Zhejiang University, 2006.)

    18. [18]

      [18] 何选明. 煤化学[M]. 2版. 北京: 冶金工业出版社, 2010. (HE Xuan-ming. Coal chemistry[M]. 2nd ed. Beijing: Metallurgical Industry Press, 2010.)

    19. [19]

      [19] WISER W H, HILL G R, KERTAMUS N J. Kinetic study of pyrolysis of high volatile bituminous coal[J]. Ind Eng Chem Process Des Dev, 1967, 6(1): 133-138.

    20. [20]

      [20] RAJ A, PRADA I D C, AMER A A, CHUNG S H. A reaction mechanism for gasoline surrogate fuels for large polycyclic aromatic hydrocarbons[J]. Combust Flame, 2012, 159(2): 500-515.

    21. [21]

      [21] COMANDINI A, MALEWICKI T, BREZINSKY K. Chemistry of polycyclic aromatic hydrocarbons formation from phenyl radical pyrolysis and reaction of phenyl and acetylene[J]. J Phys Chem A, 2012, 116(10): 2409-2434.

    22. [22]

      [22] SHUKLA B, KOSHI M. Comparative study on the growth mechanisms of PAHs[J]. Combust Flame, 2012, 158(2): 369-375.

    23. [23]

      [23] 吴爱坪, 潘铁英, 史新梅, 周丽芳, 刘瑞民, 张德祥, 高晋生. 中低阶煤热解过程中自由基的研究[J]. 煤炭转化, 2012, 35(2): 1-5. (WU Ai-ping, PAN Tie-ying, SHI Xin-mei, ZHOU Li-fang, LIU Rui-min, ZHANG De-xiang, GAO Jin-sheng. Study on free radicals in low rank coal pyrolysis process[J]. Coal Conversion, 2012, 35(2): 1-5.)

  • 加载中
    1. [1]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    4. [4]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    5. [5]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    6. [6]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    7. [7]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    8. [8]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    9. [9]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    10. [10]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    11. [11]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    12. [12]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    13. [13]

      Zongpei Zhang Yanyang Li Yanan Si Kai Li Shuangquan Zang . Developing a Chemistry Experiment Center Employing a Multifaceted Approach to Serve High-Quality Laboratory Education. University Chemistry, 2024, 39(7): 13-19. doi: 10.12461/PKU.DXHX202404041

    14. [14]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    15. [15]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    16. [16]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    17. [17]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    18. [18]

      Tao Wen Tao Zhang Changguo Sun Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055

    19. [19]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    20. [20]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

Metrics
  • PDF Downloads(0)
  • Abstract views(559)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return