Citation: GONG Juan, MI Wan-liang, SU Qing-quan. Deep desulfurization of natural gas with metal oxide desulfurizers[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(10): 1248-1255. shu

Deep desulfurization of natural gas with metal oxide desulfurizers

  • Corresponding author: SU Qing-quan, 
  • Received Date: 28 January 2013
    Available Online: 24 April 2013

    Fund Project: 国家自然科学基金 (21006005) (21006005)北京市2006年度重大科技计划(D0406001000091) (D0406001000091)中央高校基本科研业务费专项资金(FRF-SD-12-007B)。 (FRF-SD-12-007B)

  • Qualitative and quantitative analysis methods for ultra trace sulfides in natural gas were established based on GC-MS and GC-SCD, and utilized to determine the sulfides in the domestic natural gas of Beijing. The results indicate that the natural gas contains three kinds of sulfides, and the main component accounting for 94.2% is tetrahydrothiophene (THT). ZnO/Al2O3 was prepared by co-precipitation, and ZnO/γ-Al2O3, CuO/γ-Al2O3 and CuO-ZnO/γ-Al2O3 were prepared by impregnation. Experimental research on the deep removal of THT in the city natural gas was carried out with these desulfurizers. It is found that THT can be removed to less than 10×10-9 (molar fraction)with CuO/γ-Al2O3 and CuO-ZnO/γ-Al2O3 in a wide temperature range from 50~500℃, which can meet the requirements of desulfurization depth and working temperature width for distributed PEMFC power station based on natural gas.
  • 加载中
    1. [1]

      [1] 王艳辉, 吴迪镛, 迟建. 氢能及制氢的应用技术现状及发展趋势[J]. 化工进展, 2001, 20(1): 6-8.

    2. [2]

      (WANG Yan-hui, WU Di-yong, CHI Jian. The status and development current of hydrogen energy and its application technology[J]. Chemical Industry and Engineering Progress, 2001, 20(1): 6-8.)

    3. [3]

      [2] 毛宗强. 氢能及其近期应用前景[J]. 科技导报, 2005, 23(2): 34-38.

    4. [4]

      (MAO Zhong-qiang. Moving towards hydrogen energy[J]. Science & Technology Review, 2005, 23(2): 34-38.)

    5. [5]

      [3] LI L Y, KING D L. H2S removal with ZnO during fuel processing for PEM fuel cell applications[J]. Catal Today, 2006, 116(4): 537-541.

    6. [6]

      [4] HERNNDEZ S, SOLARINO L, ORSELLO G, RUSSO N, FINO D, SARACCO G, SPECCHIA V. Desulfurization processes for fuel cell systems[J]. Int J Hydrogen Energy, 2008, 33(12): 3209-3214.

    7. [7]

      [5] LIM S H, WOO E J, LEE H, LEE C H. Synthesis of magnetite-mesoporous silica composites as adsorbents for desulfurization from natural gas[J]. Appl Catal B: Environ, 2008, 85(1/2): 71-76.

    8. [8]

      [6] HAJI S, ZHANG Y, ERKEY C.Atmospheric hydrodesulfurization of diesel fuel using Pt/Al2O3 catalysts prepared by supercritical deposition for fuel cell applications[J].Appl Catal A: Gen, 2010, 374(1/2): 1-10.

    9. [9]

      [7] RATNASAMY C, WAGNER J P, SPIVEY S, WESTON E. Removal of sulfur compounds from natural gas for fuel cell applications using a sequential bed system[J]. Catal Today, 2012, 198(1): 233-238.

    10. [10]

      [8] NAGASE S, TAKAMI S, HIRAYAMA A, HIRAI Y. Development of a high efficiency substitute natural gas production process[J]. Catal Today, 1998, 45(1/4): 393-397.

    11. [11]

      [9] 周慧波, 侯凯湖, 李会芳. TiO2-Al2O3复合载体焙烧温度对Co-Mo加氢脱硫催化剂性能的影响[J]. 石油炼制与化工, 2009, 40(3): 12-16.

    12. [12]

      (ZHOU Hui-bo, HOU Kai-hu, LI Hui-fang. Effect of the calcination temperature of TiO2-Al2O3 complex support on the catalytic performance of Co-Mo hydrodesulfurization catalyst[J]. Petroleum Processing and Petrochemicals, 2009, 40(3): 12-16.)

    13. [13]

      [10] 殷爱云, 余夕志, 陈长林, 徐南平, 王延儒. Ni2P/HZSM-5上噻吩加氢脱硫性能研究[J]. 燃料化学学报, 2006, 34(5): 572-577.

    14. [14]

      (YIN Ai-yun, YU Xi-zhi, CHEN Chang-lin, XU Nan-ping, WANG Yan-ru. Study on catalytic activity of Ni2P/HZSM-5 in thiophene hydrodesulfurization[J]. Journal of Fuel Chemistry and Technology, 2006, 34(5): 572-577.)

    15. [15]

      [11] 刘文民, MARIO M. 气相色谱-双等离子体硫化学发光检测器分析天然气中硫化物[J]. 分析仪器, 2009, (4): 37-40.

    16. [16]

      (LIU Wen-min, MARIO M.Analysis of sulfur compounds in natural gas by GC with dual plasma sulfur chemiluminescence detector[J]. Analytical Instrumentation, 2009, (4): 37-40.)

    17. [17]

      [12] KIM H T, KIM S M, JUN K W, YOON Y S, KIM J H. Desulfurization of odorant-containing gas: Removal of t-butylmercaptan on Cu/ZnO/Al2O3[J]. Int J Hydro Energy, 2007, 32(15): 3603-3608.

    18. [18]

      [13] 董群, 孙征, 王德秋, 高雪, 梅春林. 金属氧化物吸附剂深度脱硫性能研究[J]. 化学工程, 2010, 38(3): 10-13.

    19. [19]

      (DONG Qun, SUN Zheng, WANG De-qiu, GAO Xue, MEI Chun-lin.Deep desulfurization performance of metal oxide adsorbents[J]. Chemical Engineering (China), 2010, 38(3): 10-13.)

    20. [20]

      [14] 张密林, 张红霞, 陈野. ZnO型复合脱硫剂的制备研究[J]. 应用科技, 2004, 31(12): 58-60.

    21. [21]

      (ZHANG Mi-lin, ZHANG Hong-xia, CHEN Ye.Preparation and research of ZnO-based compound desulfurzier[J].Applied Science and Technology, 2004, 31(12): 58-60.)

    22. [22]

      [15] 张红霞. 锌基复合脱硫剂脱硫性能的研究[J]. 燃料化学学报, 2007, 35(5): 619-623.

    23. [23]

      (ZHANG Hong-xia. Desulfurization reactivity of zinc based composite oxides[J]. Journal of Fuel Chemistry and Technology, 2007, 35(5): 619-623.)

    24. [24]

      [16] SKRZYPSKI J, BEZYERKHYY I, HEINTZ O, BELLAT J P. Low temperature H2S removal with metal-doped nanostructure ZnO sorbents: Study of the origin of enhanced reactivity in Cu-containing materials[J]. Ind Eng Chem Res, 2011, 50(9): 5714-5722.

    25. [25]

      [17] 金国杰, 樊惠玲, 李春虎, 郭汉贤. 氧化锌脱硫中氢和氧的双气氛效应及动力学研究[J]. 燃料化学学报, 2003, 32(4): 328-332.

    26. [26]

      (JIN Guo-jie, FAN Hui-ling, LI Chun-hu, GUO Han-xian. Effect of H2 and O2 on the desulfurization over zinc oxide and its kinetic study[J]. Journal of Fuel Chemistry and Technology, 2003, 32(4): 328-332.)

    27. [27]

      [18] 兰昌云, 何新秀, 徐海军, 鲁亚娟. 高效常温氧化铁脱硫剂的制备[J]. 天然气工业, 2004, 24(12): 124-126.

    28. [28]

      (LAN Chang-yun, HE Xin-xiu, XU Hai-jun, LU Ya-juan. Study on efficient ferric-oxide desulfurizer under atmospheric temperature[J]. Natural Gas Industry, 2004, 24(12): 124-126.)

    29. [29]

      [19] KIM H T, JUN K W, POTDAR H S, YOON Y S, KIM M J. Desulfurization of odorant-containing gases by sorption on Cu/ZnO/Al2O3: Effects of sulfur compounds[J]. Energy Fuels, 2007, 21(1): 327-332.

  • 加载中
    1. [1]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    2. [2]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    3. [3]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    4. [4]

      Peiqi Gao Jiao Zheng LiMiao Chen Yi Zhang . Exploration of the Deep Integration Strategy between Innovation and Entrepreneurship Education and Applied Chemistry Major Courses. University Chemistry, 2024, 39(6): 214-219. doi: 10.3866/PKU.DXHX202310086

    5. [5]

      Haolin Zhan Qiyuan Fang Jiawei Liu Xiaoqi Shi Xinyu Chen Yuqing Huang Zhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Networ. Acta Physico-Chimica Sinica, 2025, 41(2): 100017-. doi: 10.3866/PKU.WHXB202310045

    6. [6]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    7. [7]

      Liqiang Lu Qin Shuai Xike Tian Chenggang Zhou Guo'e Cheng Bo han Yulun Nie Hongtao Zheng Lei Ouyang . Exploration and Practice of Deep Integration of Production and Education in Applied Chemistry Major under the Background of Emerging Engineering Education. University Chemistry, 2024, 39(3): 138-142. doi: 10.3866/PKU.DXHX202309015

    8. [8]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    9. [9]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    10. [10]

      Jinping Qiao Yunchao Li Caiyun Nan Yuan Zhang Shuo Wei Yunling Zhao Juan Han Yufeng Li Yanping Quan Genban Sun Huifeng Li Shaoshi Guo Yong He Xuebin Deng Jiaxin Zhang Shufeng Si Jin Ouyang . Utilizing the “Second Classroom” for Multidimensional Laboratory Access to Expand the Depth and Breadth of Experimental Teaching. University Chemistry, 2024, 39(7): 99-105. doi: 10.12461/PKU.DXHX202405016

    11. [11]

      Qingfeng Zhang Shang-E Wei Hua Hou Xuan Zhao Zixuan Yang Lin Zhuang . Construction and Reform of the Structural Chemistry Curriculum and Textbooks under the Chemistry “101 Plan”: an In-Depth Exploration for Cultivating Top-Notch Innovative Talents. University Chemistry, 2024, 39(10): 38-44. doi: 10.12461/PKU.DXHX202409047

    12. [12]

      Liping Wang Huanfeng Wang Yuling Li Lingchuan Li Xiaojing Li Huifeng Chen Bowen Ji Linna Wang . Exploring the Full Process of a Research-Based Teaching Model through the Deep Integration of Theory and Practice: A Case Study of the Self-Designed Scheme for “Determination of Total Acid Content in White Vinegar”. University Chemistry, 2025, 40(5): 244-251. doi: 10.12461/PKU.DXHX202406035

    13. [13]

      Jinglun Wang Hu Zhou Baishu Zheng Guobin Li Ming Yue Zhihua Zhou . Exploration and Practice of “Four Cooperations and Four Integrations” to Cultivate Innovative Talents in Chemical Materials in Local Colleges. University Chemistry, 2024, 39(7): 93-98. doi: 10.12461/PKU.DXHX202405013

    14. [14]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    15. [15]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    16. [16]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    17. [17]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    18. [18]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    19. [19]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    20. [20]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

Metrics
  • PDF Downloads(0)
  • Abstract views(365)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return