Citation:
DOU Zhe, FENG Ming, XU Xiu-feng. Catalytic decomposition of N2O over Au/Co3O4 and Au/ZnCo2O4 catalysts[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(10): 1234-1240.
-
Au/Co3O4 catalysts with different gold loadings were prepared by the deposition-precipitation method using HAuCl4 solution through adjustment of the pH value to 7, 9 or 11. Their catalytic properties for N2O decomposition in the presence of oxygen were investigated. 0.29%Au/Co3O4 catalyst prepared at the pH value of 9 exhibited higher catalytic activity than 0.31%Au/ZnCo2O4 prepared under optimal conditions although ZnCo2O4 was more active than Co3O4. AES, BET, XRD, SEM, XPS and H2-TPR characterization results indicated a synergistic effect existed between gold and cobalt species in Au/Co3O4, which is, however, absent in the Au/ZnCo2O4. Despite that N2O was completely decomposed at 500 ℃ in oxygen atmosphere for both the samples, the N2O conversion was decreased to 92% and 63% after the reaction was carried out for 10 h in the presence of both oxygen and steam over the 0.29%Au/Co3O4 and the 0.31%Au/ZnCo2O4, respectively.
-
Keywords:
- N2O decomposition,
- Co3O4,
- ZnCo2O4,
- gold catalyst
-
-
-
[1]
[1] WOOD B R, REIMER J A, BELL A T. Studies of N2O adsorption and decomposition on Fe-ZSM-5[J]. J Catal, 2002, 209(1): 151-158.
-
[2]
[2] WACLAW A, NOWINSKA K, SCHWIEGER W, ZIELINSKA A. N2O decomposition over iron modified zeolites ZSM-5[J]. Catal Today, 2004, 90(1/2): 21-25.
-
[3]
[3] PIRNGRUBER G D, LUECHINGER M, ROY P K, CECCHETTO A, SMIRNIOTIS P. N2O decomposition over iron-containing zeolites prepared by different methods: A comparison of the reaction mechanism[J]. J Catal, 2004, 224(2): 429-440.
-
[4]
[4] PIETERSE J A Z, BOONEVELD S, VAN DEN BRINK R W. Evaluation of Fe-zeolite catalysts prepared by different methods for the decomposition of N2O[J]. Appl Catal B: Environ, 2004, 51(4): 215-228.
-
[5]
[5] JÍÑA K, NOVÁKOVÁ J, SCHWARZE M, VONDROVÁ A, SKLENÁK S, SOBALIK Z. Role of the Fe-zeolite structure and iron state in the N2O decomposition: Comparison of Fe-FER, Fe-BEA, and Fe-MFI catalysts[J]. J Catal, 2009, 262(1): 27-34.
-
[6]
[6] OHNISHI C, ASANO K, IWAMOTO S, CHIKAMA K, INOUE M. Alkali-doped Co3O4 catalysts for direct decomposition of N2O in the presence of oxygen[J]. Catal Today, 2007, 120(2): 145-150.
-
[7]
[7] ASANO K, OHNISHI C, IWAMOTO S, SHIOYA Y, INOUE M. Potassium-doped Co3O4 catalyst for direct decomposition of N2O[J]. Appl Catal B: Environ, 2008, 78(3/4): 242-249.
-
[8]
[8] STELMACHOWSKI P, MANIAK G, KOTARBA A, SOJKA Z. Strong electronic promotion of Co3O4 towards N2O decomposition by surface alkali dopants[J]. Catal Commun, 2009, 10(7): 1062-1065.
-
[9]
[9] PASHA N, LINGAIAH N, BABU N S, REDDY P S S, PRASAD P S S. Studies on cesium doped cobalt oxide catalysts for direct N2O decomposition in the presence of oxygen and steam[J]. Catal Commun, 2008, 10(2): 132-136.
-
[10]
[10] SHEN Q, LI L D, LI J J, TIAN H, HAO Z P. A study on N2O catalytic decomposition over Co/MgO catalysts[J]. J Hazard Mater, 2009, 163(2/3): 1332- 1337.
-
[11]
[11] 武海鹏, 李文静, 郭丽, 潘燕飞, 徐秀峰. 碱金属助剂类型及前驱物对改性NiAl复合氧化物催化分解N2O活性的影响[J]. 燃料化学学报, 2011, 39(7): 550-555.
-
[12]
(WU Hai-peng, LI Wen-jing, GUO Li, PAN Yan-fei, XU Xiu-feng. The effect of promoter species and precursors on catalytic activity of alkali metal promoted NiAl mixed oxides for N2O decomposition[J]. Journal of Fuel Chemistry and Technology, 2011, 39(7): 550-555.)
-
[13]
[12] 武海鹏, 钱振英, 徐晓玲, 徐秀峰. K改性NiAl类水滑石衍生复合氧化物催化分解N2O[J]. 燃料化学学报, 2011, 39(2): 115-121.
-
[14]
(WU Hai-peng, XU Zhen-ying, XU Xiao-ling, XU Xiu-feng. N2O decomposition over K-promoted NiAl mixed oxides derived from hydrotalcite-like compounds[J]. Journal of Fuel Chemistry and Technology, 2011, 39(2): 115-121.)
-
[15]
[13] CHENG H K, HUANG Y Q, WANG A Q, LI L, WANG X D, ZHANG T. N2O decomposition over K-promoted Co-Al catalysts prepared from hydrotalcite-like precursors[J]. Appl Catal B: Environ, 2009, 89(3/4): 391-397.
-
[16]
[14] ABU-ZIED B M. 碱促进的钴酸镁催化剂上的氧化亚氮分解[J]. 催化学报, 2011, 32(2): 264-272.
-
[17]
(ABU-ZIED B M. Nitrous oxide decomposition over alkali-promoted magnesium cobaltite catalysts[J]. Chinese Journal of Catalysis, 2011, 32(2): 264-272.)
-
[18]
[15] PARRES-ESCLAPEZ S, ILLÁN-GÓMEZ M J, SALINAS-MARTÍNEZ DE LECEA C, BUENO-LPEZ A. On the importance of the catalyst redox properties in the N2O decomposition over alumina and ceria supported Rh, Pd and Pt[J]. Appl Catal B: Environ, 2010, 96(3/4): 370-378.
-
[19]
[16] BOISSEL V, TAHIR S, KOH C A. Catalytic decomposition of N2O over monolithic supported noble metal-transition metal oxides[J]. Appl Catal B: Environ, 2006, 64(3/4): 234-242.
-
[20]
[17] YAN L, ZHANG X M, REN T, ZHANG H P, WANG X L, SUO J S. Superior performance of nano-Au supported over Co3O4 catalyst in direct N2O decomposition[J]. Chem Commun, 2002, (8): 860-861.
-
[21]
[18] 徐晓玲, 徐秀峰, 张国涛, 牛宪军. 钴铝复合氧化物负载金催化剂的制备及催化分解N2O[J]. 燃料化学学报, 2009, 37(5): 595-600.
-
[22]
(XU Xiao-ling, XU Xiu-feng, ZHANG Guo-tao, NIU Xian-jun. Preparation of Co-Al mixed oxide supported gold catalysts and their catalytic activity for N2O decomposition[J]. Journal of Fuel Chemistry and Technology, 2009, 37(5): 595-600.)
-
[23]
[19] LEE S J, GAVRIILIDIS A. Supported Au catalysts for low-temperature CO oxidation prepared by impregnation[J]. J Catal, 2002, 206(2): 305-313.
-
[24]
[20] KUNG H H, KUNG M C, COSTELLO C K. Supported Au catalysts for low temperature CO oxidation[J]. J Catal, 2003, 216(1/2): 425-432.
-
[25]
[21] MANIAK G, STELMACHOWSKI P, KOTARBA A, SOJKA Z, RICO-PÉREZ V, BUENO-LÓPEZ A. Rationales for the selection of the best precursor for potassium doping of cobalt spinel based deN2O catalyst[J]. Appl Catal B: Environ, 2013, 136-137: 302-307.
-
[26]
[22] LIN J N, CHEN J H, HSIAO C Y, KANG Y M, WAN B Z. Gold supported on surface acidity modified Y-type and iron/Y-type zeolite for CO oxidation[J]. Appl Catal B: Environ, 2002, 36(1): 19-29.
-
[1]
-
-
-
[1]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[2]
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
-
[3]
Xiaofang Li , Zhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080
-
[4]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[5]
Yajin Li , Huimin Liu , Lan Ma , Jiaxiong Liu , Dehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005
-
[6]
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
-
[7]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005
-
[8]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[9]
Linping Li , Junhui Su , Yanping Qiu , Yangqin Gao , Ning Li , Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472
-
[10]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021
-
[11]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[12]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
-
[13]
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064
-
[14]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[15]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020
-
[16]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[17]
Xueting Feng , Ziang Shang , Rong Qin , Yunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005
-
[18]
Qi Wu , Changhua Wang , Yingying Li , Xintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107
-
[19]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019
-
[20]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(414)
- HTML views(29)