Citation: DOU Zhe, FENG Ming, XU Xiu-feng. Catalytic decomposition of N2O over Au/Co3O4 and Au/ZnCo2O4 catalysts[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(10): 1234-1240. shu

Catalytic decomposition of N2O over Au/Co3O4 and Au/ZnCo2O4 catalysts

  • Corresponding author: XU Xiu-feng, 
  • Received Date: 8 April 2013
    Available Online: 12 June 2013

  • Au/Co3O4 catalysts with different gold loadings were prepared by the deposition-precipitation method using HAuCl4 solution through adjustment of the pH value to 7, 9 or 11. Their catalytic properties for N2O decomposition in the presence of oxygen were investigated. 0.29%Au/Co3O4 catalyst prepared at the pH value of 9 exhibited higher catalytic activity than 0.31%Au/ZnCo2O4 prepared under optimal conditions although ZnCo2O4 was more active than Co3O4. AES, BET, XRD, SEM, XPS and H2-TPR characterization results indicated a synergistic effect existed between gold and cobalt species in Au/Co3O4, which is, however, absent in the Au/ZnCo2O4. Despite that N2O was completely decomposed at 500 ℃ in oxygen atmosphere for both the samples, the N2O conversion was decreased to 92% and 63% after the reaction was carried out for 10 h in the presence of both oxygen and steam over the 0.29%Au/Co3O4 and the 0.31%Au/ZnCo2O4, respectively.
  • 加载中
    1. [1]

      [1] WOOD B R, REIMER J A, BELL A T. Studies of N2O adsorption and decomposition on Fe-ZSM-5[J]. J Catal, 2002, 209(1): 151-158.

    2. [2]

      [2] WACLAW A, NOWINSKA K, SCHWIEGER W, ZIELINSKA A. N2O decomposition over iron modified zeolites ZSM-5[J]. Catal Today, 2004, 90(1/2): 21-25.

    3. [3]

      [3] PIRNGRUBER G D, LUECHINGER M, ROY P K, CECCHETTO A, SMIRNIOTIS P. N2O decomposition over iron-containing zeolites prepared by different methods: A comparison of the reaction mechanism[J]. J Catal, 2004, 224(2): 429-440.

    4. [4]

      [4] PIETERSE J A Z, BOONEVELD S, VAN DEN BRINK R W. Evaluation of Fe-zeolite catalysts prepared by different methods for the decomposition of N2O[J]. Appl Catal B: Environ, 2004, 51(4): 215-228.

    5. [5]

      [5] JÍÑA K, NOVÁKOVÁ J, SCHWARZE M, VONDROVÁ A, SKLENÁK S, SOBALIK Z. Role of the Fe-zeolite structure and iron state in the N2O decomposition: Comparison of Fe-FER, Fe-BEA, and Fe-MFI catalysts[J]. J Catal, 2009, 262(1): 27-34.

    6. [6]

      [6] OHNISHI C, ASANO K, IWAMOTO S, CHIKAMA K, INOUE M. Alkali-doped Co3O4 catalysts for direct decomposition of N2O in the presence of oxygen[J]. Catal Today, 2007, 120(2): 145-150.

    7. [7]

      [7] ASANO K, OHNISHI C, IWAMOTO S, SHIOYA Y, INOUE M. Potassium-doped Co3O4 catalyst for direct decomposition of N2O[J]. Appl Catal B: Environ, 2008, 78(3/4): 242-249.

    8. [8]

      [8] STELMACHOWSKI P, MANIAK G, KOTARBA A, SOJKA Z. Strong electronic promotion of Co3O4 towards N2O decomposition by surface alkali dopants[J]. Catal Commun, 2009, 10(7): 1062-1065.

    9. [9]

      [9] PASHA N, LINGAIAH N, BABU N S, REDDY P S S, PRASAD P S S. Studies on cesium doped cobalt oxide catalysts for direct N2O decomposition in the presence of oxygen and steam[J]. Catal Commun, 2008, 10(2): 132-136.

    10. [10]

      [10] SHEN Q, LI L D, LI J J, TIAN H, HAO Z P. A study on N2O catalytic decomposition over Co/MgO catalysts[J]. J Hazard Mater, 2009, 163(2/3): 1332- 1337.

    11. [11]

      [11] 武海鹏, 李文静, 郭丽, 潘燕飞, 徐秀峰. 碱金属助剂类型及前驱物对改性NiAl复合氧化物催化分解N2O活性的影响[J]. 燃料化学学报, 2011, 39(7): 550-555.

    12. [12]

      (WU Hai-peng, LI Wen-jing, GUO Li, PAN Yan-fei, XU Xiu-feng. The effect of promoter species and precursors on catalytic activity of alkali metal promoted NiAl mixed oxides for N2O decomposition[J]. Journal of Fuel Chemistry and Technology, 2011, 39(7): 550-555.)

    13. [13]

      [12] 武海鹏, 钱振英, 徐晓玲, 徐秀峰. K改性NiAl类水滑石衍生复合氧化物催化分解N2O[J]. 燃料化学学报, 2011, 39(2): 115-121.

    14. [14]

      (WU Hai-peng, XU Zhen-ying, XU Xiao-ling, XU Xiu-feng. N2O decomposition over K-promoted NiAl mixed oxides derived from hydrotalcite-like compounds[J]. Journal of Fuel Chemistry and Technology, 2011, 39(2): 115-121.)

    15. [15]

      [13] CHENG H K, HUANG Y Q, WANG A Q, LI L, WANG X D, ZHANG T. N2O decomposition over K-promoted Co-Al catalysts prepared from hydrotalcite-like precursors[J]. Appl Catal B: Environ, 2009, 89(3/4): 391-397.

    16. [16]

      [14] ABU-ZIED B M. 碱促进的钴酸镁催化剂上的氧化亚氮分解[J]. 催化学报, 2011, 32(2): 264-272.

    17. [17]

      (ABU-ZIED B M. Nitrous oxide decomposition over alkali-promoted magnesium cobaltite catalysts[J]. Chinese Journal of Catalysis, 2011, 32(2): 264-272.)

    18. [18]

      [15] PARRES-ESCLAPEZ S, ILLÁN-GÓMEZ M J, SALINAS-MARTÍNEZ DE LECEA C, BUENO-LPEZ A. On the importance of the catalyst redox properties in the N2O decomposition over alumina and ceria supported Rh, Pd and Pt[J]. Appl Catal B: Environ, 2010, 96(3/4): 370-378.

    19. [19]

      [16] BOISSEL V, TAHIR S, KOH C A. Catalytic decomposition of N2O over monolithic supported noble metal-transition metal oxides[J]. Appl Catal B: Environ, 2006, 64(3/4): 234-242.

    20. [20]

      [17] YAN L, ZHANG X M, REN T, ZHANG H P, WANG X L, SUO J S. Superior performance of nano-Au supported over Co3O4 catalyst in direct N2O decomposition[J]. Chem Commun, 2002, (8): 860-861.

    21. [21]

      [18] 徐晓玲, 徐秀峰, 张国涛, 牛宪军. 钴铝复合氧化物负载金催化剂的制备及催化分解N2O[J]. 燃料化学学报, 2009, 37(5): 595-600.

    22. [22]

      (XU Xiao-ling, XU Xiu-feng, ZHANG Guo-tao, NIU Xian-jun. Preparation of Co-Al mixed oxide supported gold catalysts and their catalytic activity for N2O decomposition[J]. Journal of Fuel Chemistry and Technology, 2009, 37(5): 595-600.)

    23. [23]

      [19] LEE S J, GAVRIILIDIS A. Supported Au catalysts for low-temperature CO oxidation prepared by impregnation[J]. J Catal, 2002, 206(2): 305-313.

    24. [24]

      [20] KUNG H H, KUNG M C, COSTELLO C K. Supported Au catalysts for low temperature CO oxidation[J]. J Catal, 2003, 216(1/2): 425-432.

    25. [25]

      [21] MANIAK G, STELMACHOWSKI P, KOTARBA A, SOJKA Z, RICO-PÉREZ V, BUENO-LÓPEZ A. Rationales for the selection of the best precursor for potassium doping of cobalt spinel based deN2O catalyst[J]. Appl Catal B: Environ, 2013, 136-137: 302-307.

    26. [26]

      [22] LIN J N, CHEN J H, HSIAO C Y, KANG Y M, WAN B Z. Gold supported on surface acidity modified Y-type and iron/Y-type zeolite for CO oxidation[J]. Appl Catal B: Environ, 2002, 36(1): 19-29.

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    3. [3]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    6. [6]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    7. [7]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    8. [8]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    9. [9]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    10. [10]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    13. [13]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    14. [14]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    15. [15]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    18. [18]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    19. [19]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    20. [20]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

Metrics
  • PDF Downloads(0)
  • Abstract views(413)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return