Citation: JING Wen, HOU Ya-qin, GUO Qian-qian, HUANG Zhang-gen, HAN Xiao-jin, MA Guo-qiang. Using vanadyl sulfate to prepare carbon-supported vanadium catalyst for flue gas desulfurization[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(10): 1223-1233. shu

Using vanadyl sulfate to prepare carbon-supported vanadium catalyst for flue gas desulfurization

  • Corresponding author: HUANG Zhang-gen, 
  • Received Date: 8 April 2013
    Available Online: 12 June 2013

  • Vanadyl sulfate (VIVOSO4) was used to prepare carbon-supported vanadium catalyst for flue gas desulfurization. The VIVOSO4 impregnated on activated carbon (AC) was easily oxidized into vanadium(V) sulfate phase (possibly V2O3(SO4)2) in air, which exhibited high catalytic activity toward SO2 oxidation, thus significantly enhancing SO2 retention on AC. Furthermore, the vanadium(V) sulfate can be decomposed upon calcination in nitrogen with optimum temperature of 500℃ to form vanadium(V) oxide, further improving SO2 retention mainly due to increase in micorpore volume suitable for sulfate storage and showing suitability of vanadyl sulfate to prepare traditional V2O5/AC catalyst. To obtain fully oxidized vanadium oxides, preoxidation was carried out on catalyst after calcination. However, due to ablation of carbon support, reduction of vanadium and/or formation of surface oxygen groups, the preoxidation was negative for SO2 retention. Additionally, this paper provided preliminary evidence indicating transformation of vanadium(V) oxide in V2O5/AC into vanadium(V) sulfate during desulfurization. Combined with catalytic role of vanadium(V) sulfate for SO2 oxidation, SO2 removal on V2O5/AC likely followed a mechanism that the vanadium(V) oxide firstly transformed into vanadium(V) sulfate and the latter was then responsible for subsequent SO2 oxidation into H2SO4.
  • 加载中
    1. [1]

      [1] LOÓPEZ D, BUITRAGO R, SEPUÙLVEDA-ESCRIBANO A, RODRIÍGUEZ-REINOSO F, MONDRAGOÙN F. Low temperature catalytic adsorption of SO2 on activated carbon[J]. J Phys Chem C, 2008, 112(39): 15335-15340.

    2. [2]

      [2] ARCIBAR-OROZCO J A, RANGEL-MENDEZ J R, BANDOSZ T J. Reactive adsorption of SO2 on activated carbons with deposited iron nanoparticles[J]. J Hazard Mater, 2013, 246-247: 300-309.

    3. [3]

      [3] NAKTIYOK J, BAYRAKÖEKEN H, ÖZER A K, GŰLABOGLU M S. Flue gas desulfurization by calcined phosphate rock and reaction kinetics[J]. Energy Fuels, 2013, 21(3):1466-1472.

    4. [4]

      [4] SAKAI M, SU C, SASAOKA E. Simultaneous removal of SOx and NOx using slaked lime at low temperature[J]. Ind Eng Chem Res, 2002, 41(20): 5029-5033.

    5. [5]

      [5] KAMINSKI J. Technologies and costs of SO2-emissions reduction for the energy sector[J]. Appl Energy, 2003, 75(3/4): 165-172.

    6. [6]

      [6] DAVINI P. SO2 and NOx adsorption properties of activated carbons obtained from a pitch containing iron derivatives[J]. Carbon, 2001, 39(14): 2173-2179.

    7. [7]

      [7] TSENG H H, WEY M Y. Study of SO2 adsorption and thermal regeneration over activated carbon-supported copper oxide catalysts[J]. Carbon, 2004, 42(11): 2269-2278.

    8. [8]

      [8] BOYANO A, GÁLVEZ M E, MOLINER R, LÁZARO M J. Carbon-based catalytic briquettes for the reduction of NO: Effect of H2SO4 and HNO3 carbon support treatment[J]. Fuel, 2008, 87(10/11): 2058-2068.

    9. [9]

      [9] XING X, LIU Z, YANG J. Mo and Co doped V2O5/AC catalyst-sorbents for flue gas SO2 removal and elemental sulfur production[J]. Fuel, 2008, 87(8/9): 1705-1710.

    10. [10]

      [10] MACÍAS-PÉREZ M C, BUENO-LÓPEZ A, LILLO-RÓDENAS M A, SALINAS-MARTÍNEZ DE LECEA C, LINARES-SOLANO A. SO2 retention on CaO/activated carbon sorbents. Part III. Study of the retention and regeneration conditions[J]. Fuel, 2008, 87(15/16): 3170-3175.

    11. [11]

      [11] MA J, LIU Z, LIU S, ZHU Z. A regenerable Fe/AC desulfurizer for SO2 adsorption at low temperatures[J]. Appl Catal B: Environ, 2003, 45(4): 301-309.

    12. [12]

      [12] PRZEPIÓRSKI J, CZYZEWSKI A, KAPICA J, MOSZYŃSKI D, GRZMIL B, TRYBA B, MOZIA S, MORAWSKI A W. Low temperature removal of SO2 traces from air by MgO-loaded porous carbons[J]. Chem Eng J, 2012, 191: 147-153.

    13. [13]

      [13] MA J, LIU Z, LIU Q, GUO S, HUANG Z, XIAO Y. SO2 and NO removal from flue gas over V2O5/AC at lower temperatures-Role of V2O5 on SO2 removal[J]. Fuel Process Technol, 2008, 89(3): 242-248.

    14. [14]

      [14] XIAO Y, LIU Q, LIU Z, HUANG Z, GUO Y, YANG J. Roles of lattice oxygen in V2O5 and activated coke in SO2 removal over coke-supported V2O5 catalysts[J]. Appl Catal B: Environ, 2008, 82(1/2): 114-119.

    15. [15]

      [15] 郭彦霞, 刘振宇, 李允梅, 刘清雅. 氨再生条件对V2O5/AC同时脱硫脱硝活性的影响[J]. 燃料化学学报, 2007, 35(3): 344-348.

    16. [16]

      (GUO Yan-xia, LIU Zhen-yu, LI Yun-mei, LIU Qing-ya. NH3 regeneration of SO2-captured V2O5/AC catalyst-sorbent for simultaneous SO2 and NO removal[J]. Journal of Fuel Chemistry and Technology, 2007, 35(3): 344-348.)

    17. [17]

      [16] ZHU Z, NIU H, LIU Z, LIU, S. Decomposition and reactivity of NH4HSO4 on V2O5/AC catalysts used for NO reduction with ammonia[J]. J Catal, 2000, 195(2): 268-278.

    18. [18]

      [17] COULSTON G W, THOMPSON E A, HERRON N. Characterization of VPO catalysts by X-ray photoelectron spectroscopy[J]. J Catal, 1996, 163(1): 122-129.

    19. [19]

      [18] NEFEDOV V I, SALYN YA V, LEONHARDT G, SCHEIBE R. A comparison of different spectrometers and charge corrections used in X-ray photoelectron spectroscopy[J]. J Electro Spectrosc Relat Phenom, 1977, 10(2): 121-124.

    20. [20]

      [19] KASPERKIEWICZ J, KOVACICH J A, LICHTMAN D. XPS studies of vanadium and vanadium oxides[J]. J Electro Spectrosc Relat Phenom, 1983, 32(2): 123-132.

    21. [21]

      [20] GARCÍA-BORDEJÉ E, PINILLA J L, LÁZARO M J, MOLINER R, FIERRO J L G. Role of sulphates on the mechanism of NH3-SCR of NO at low temperatures over presulphated vanadium supported on carbon-coated monoliths[J]. J Catal, 2005, 233(1): 166-175.

    22. [22]

      [21] GIAKOUMELOU I, PARVULESCU V, BOGHOSIAN S. Oxidation of sulfur dioxide over supported solid V2O5/SiO2 and supported molten salt V2O5-Cs2SO4/SiO2 catalysts: Molecular structure and reactivity[J]. J Catal, 2004, 225(2): 337-349.

    23. [23]

      [22] CHRISTODOULAKIS A, BOGHOSIAN S. Molecular structure of supported molten salt catalysts for SO2 oxidation[J]. J Catal, 2003, 215(1): 139-150.

    24. [24]

      [23] GIAKOUMELOU I, CARABA R M, PARVULESCU V I, BOGHOSIAN S. First in situ raman study of vanadium oxide based SO2 oxidation supported molten salt catalysts[J]. Catal Lett, 2002, 78(1): 209-214.

    25. [25]

      [24] LIZZIO A A, DEBARR J A. Effect of surface area and chemisorbed oxygen on the SO2 adsorption capacity of activated char[J]. Fuel, 1996, 75(13): 1515-1522.

    26. [26]

      [25] LIZZIO A A, DEBARR J A. Mechanism of SO2 removal by carbon[J]. Energy Fuels, 1997, 11(2): 284-291.

    27. [27]

      [26] RAYMUNDO-PIÑERO E, CAZORLA-AMORÓS D, LINARES-SOLANO A. Temperature programmed desorption study on the mechanism of SO2 oxidation by activated carbon and activated carbon fibres[J]. Carbon, 2001, 39(2): 231-242.

    28. [28]

      [27] RAYMUNDO-PIÑERO E, CAZORLA-AMORÓS D, SALINAS-MARTINEZ DE LECEA C, LINARES-SOLANO A. Factors controling the SO2 removal by porous carbons: Relevance of the SO2 oxidation step[J]. Carbon, 2000, 38(3): 335-344.

    29. [29]

      [28] ZHU Z, LIU Z, NIU H, LIU S, HU T, LIU T, XIE Y. Mechanism of SO2 promotion for NO reduction with NH3 over activated carbon-supported vanadium oxide catalyst[J]. J Catal, 2001, 197(1): 6-16.

    30. [30]

      [29] ZHOU J H, SUI Z J, ZHU J, LI P, CHEN D, DAI Y C, YUAN W K. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR[J]. Carbon, 2007, 45(4): 785-796.

    31. [31]

      [30] LEE W H, LEE J G, REUCROFT P J. XPS study of carbon fiber surfaces treated by thermal oxidation in a gas mixture of O2/(O2+N2) [J]. Appl Surf Sci, 2001, 171(1/2): 136-142.

    32. [32]

      [31] MARTIN C, PERRARD A, JOLY J P, GAILLARD F, DELECROIX V. Dynamic adsorption on activated carbons of SO2 traces in air: I. Adsorption capacities[J]. Carbon, 2002, 40(12): 2235-2246.

    33. [33]

      [32] DAVINI P, Adsorption and desorption of SO2 on active carbon: The effect of surface basic groups[J]. Carbon, 1990, 28(4): 565-571.

    34. [34]

      [33] ZHU Z, LIU Z, LIU S, NIU H, HU T, LIU T, XIE Y. NO reduction with NH3 over an activated carbon-supported copper oxide catalysts at low temperatures[J]. Appl Catal B: Environ, 2000, 26(1): 25-35.

    35. [35]

      [34] TSENG H H, WEY M Y, LIANG Y S, CHEN K H. Catalytic removal of SO2, NO and HCl from incineration flue gas over activated carbon-supported metal oxides[J]. Carbon, 2003, 41(5): 1079-1085.

    36. [36]

      [35] XING X, LIU Z, WANG J. Elemental sulfur production through regeneration of a SO2-adsorbed V2O5-CoO/AC in H2[J]. Fuel Process Technol, 2007, 88(7): 717-722.

    37. [37]

      [36] GARCÍA-BORDEJÉ E, PINILLA J L, LÁZARO M J, MOLINER R. NH3-SCR of NO at low temperatures over sulphated vanadia on carbon-coated monoliths: Effect of H2O and SO2 traces in the gas feed[J]. Appl Catal B: Environ, 2006, 66(3/4): 281-287.

  • 加载中
    1. [1]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    4. [4]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    5. [5]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    6. [6]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    7. [7]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    8. [8]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    9. [9]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    10. [10]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    11. [11]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    12. [12]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    13. [13]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    14. [14]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    15. [15]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    16. [16]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    17. [17]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    18. [18]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    19. [19]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    20. [20]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

Metrics
  • PDF Downloads(0)
  • Abstract views(341)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return