Citation: HAI Hang, YAN Chang-feng, HU Rong-rong, GUO Chang-qing, LI Wen-bo. Effect of promoter on performance of hydrogen production from steam reforming of dimethyl ether with a metal foam microreactor[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(10): 1210-1216. shu

Effect of promoter on performance of hydrogen production from steam reforming of dimethyl ether with a metal foam microreactor

  • Corresponding author: YAN Chang-feng, 
  • Received Date: 24 February 2013
    Available Online: 12 April 2013

    Fund Project: 国家自然科学基金(21276254)。 (21276254)

  • The CuO-ZnO-Al2O3/HZSM-5 catalyst prepared by co-precipitation and mechanical mixing with HZSM-5 was used for hydrogen production from steam reforming of dimethyl ether. The effects of Cr, Zr, Co and Ce promoters on catalyst performance were investigated by means of X-ray diffraction(XRD), temperature programmed reduction (H2-TPR), SEM and BET. The results showed that addition of promoter Cr can reduce the average pore diameter and reduction temperature of catalyst effectively, and inhibited the form of Zn(OH)2 in the catalyst preparation process. The conversion of dimethyl ether and hydrogen yield reaches 99% and 95% respectively at low reaction temperature. The effects of reaction termperature, space velocity and steam-to-DME ratio were investigated. At the conditions of 250℃, the space velocity of 3884mL/(g.h), H2O/DME=5, over 97% of DME conversion was obtained over the CuO-ZnO-Al2O3-Cr2O3/HZSM-5 catalyst and the catalytic activity has no obvious deactivation during 50h durability test.
  • 加载中
    1. [1]

      [1] EBERLE U, FELDERHOFF M, SCHUTH F. Chemical and physical solutions for hydrogen storage[J]. Chem Int Edition, 2009, 48(36): 6608-6630.

    2. [2]

      [2] 王晓蕾, 任克威, 林瑞. 二甲醚重整制氢技术的研究进展[J]. 天然气化工, 2008, 33(03): 65-69.

    3. [3]

      (WANG Xiao-lei, REN Ke-wei, LIN Rui. Research progress in hydrogen production from the reforming of dimethyl ether[J]. Nature Gas Chemical Industry, 2008, 33(03): 65-69.)

    4. [4]

      [3] 王树东.分布式制氢与燃料电池氢源[C]. 第八届全国氢能学术会议, 西安, 2007.

    5. [5]

      (WANG Shu-dong. Distributed hydrogen production and hydrogen source of fuel cell[C]. The 8th China hydrogen energy conference, Xi'an, 2007.)

    6. [6]

      [4] CHANG C C, HSU C C, CHANG C T, CHEN Y P, LIAW B J, CHEN Y Z. Effect of noble metal on oxidative steam reforming of methanol over CuO/ZnO/Al2O3 catalysts[J]. Int J Hydrogen Energy, 2012, 37(15): 11176-11184.

    7. [7]

      [5] PAPAVASILIOU J, AVGOUROPOULOS G, IOANNIDES T. Effect of dopants on the performance of CuO-CeO2 catalysts in methanol steam reforming[J]. App Catal B: Environ, 2007, 69(3/4): 226-234.

    8. [8]

      [6] ALEXEY S, CHAN K. Progress in development of direct dimethyl ether fuel cells[J]. Appl Catal B: Environ, 2009, 91(1/2): 1-10.

    9. [9]

      [7] SEMELSBERGER T A, BORUP R L, GREENE H L. Dimethyl ether (DME) as an alternative fuel[J]. J Power Sources, 2006, 156(2): 497-511.

    10. [10]

      [8] 李超, 李琢, 李建青, 杨成, 吴晋沪. 一步法合成二甲醚整体式催化剂的制备及反应性能研究[J]. 燃料化学学报, 2011, 39(4): 287-292.

    11. [11]

      (LI Chao, LI Zhuo, LI Jian-qing, YANG Cheng, WU Jin-hu. Preparation and catalytic propertiesof amonolithic catalyst for one step synthesis of dimethyl ether[J]. Journal of Fuel Chemistry and Technology, 2011, 39(4): 287-292.)

    12. [12]

      [9] 左宜赞, 张强, 安欣, 韩明汉, 王铁锋, 王金福, 金涌. 浆态床中Cu/ZnO/Al2O3/ZrO2+γ-Al2O3 双功能催化剂一步法合成二甲醚[J]. 燃料化学学报, 2010, 38(1): 102-107.

    13. [13]

      (ZUO Yi-zan, ZHANG Qiang, AN Xin, HAN Ming-han, WANG Tie-feng, WANG Jin-fu, JIN Yong. Single-step dimethyl ether synthesison a Cu/ZnO/Al2O3/ZrO2+γ-Al2O3 bifunctional catalyst in slurry reactor[J]. Journal of Fuel Chemistry and Technology, 2010, 38(1): 102-107.)

    14. [14]

      [10] 陈卫国, 胡娟. 二甲醚(DME)的开发和应用[J]. 城市燃气, 2006, 375(5): 3-14.

    15. [15]

      (CHEN Wei-guo, HU Juan. The development and application of dimethyl ether(DME)[J]. City Gas, 2006, 375(5): 3-14.)

    16. [16]

      [11] GALVITA V V, SEMIN G L, BELYAEV V D, YURIEVA T M, SOBYANIN V A. Production of hydrogen from dimethyl ether [J]. Appl Catal A: Gen, 2001, 216(1/2): 85-90.

    17. [17]

      [12] PARK S, CHOI B, KIM H, KIM J H. Hydrogen production from dimethyl ether over Cu/gamma-Al2O3 catalyst with zeolites and its effects in the lean NOx trap performance [J]. Int J Hydrogen Energy, 2012, 37(6): 4762-4773.

    18. [18]

      [13] LI J, ZHANG Q J, LONG X, QI P, LIU Z T, LIU ZW. Hydrogen production for fuel cells via steam reforming of dimethyl ether over commercial Cu/ZnO/Al2O3 and zeolite[J]. Chem Eng J, 2012, 187: 299-305.

    19. [19]

      [14] 王晓蕾, 任克威, 潘相敏, 林瑞, 马建新.固体酸催化剂对二甲醚水蒸气重整制氢过程的影响[J]. 催化学报, 2009, 30(4): 297-304.

    20. [20]

      (WANG Xiao-lei, REN Ke-wei, PAN Xiang-min, LIN Rui, MA Jian-xin. Influence of solid acid catalysts on steam reforming of dimethyl ether for hydrogen production[J]. Chinese Journal of Catalysis, 2009, 30(4): 297-304.)

    21. [21]

      [15] PAJAIE H S, TAGHIZADEH M. Investigation of promoted Cu/ZnO/Al2O3 methanol steam reforming nanocatalysts by full factorial design[J]. Chem Eng Technol, 2012, 35(10): 1857-1864.

    22. [22]

      [16] KAWABATA T, MATSUOKA H, SHISHIDO T, LI D L, TIAN Y, SANO T, TAKEHIRA K. Steam reforming of dimethyl ether over ZSM-5 coupled with Cu/ZnO/Al2O3 catalyst prepared by homogeneous precipitation[J]. Appl Catal A: Gen, 2006, 32(4): 82-90.

    23. [23]

      [17] YU H, CHEN H Q, PAN M Q, TANG Y, ZENG K, PENG F, WANG H J. Effect of the metal foam materials on the performance of methanol steam micro-reformer for fuel cells[J]. Appl Catal A: Gen, 2007, 327(1): 106-113.

    24. [24]

      [18] 李娟, 海航, 闫常峰, 胡蓉蓉, 么志伟, 罗伟民, 郭常青, 李文博. 焙烧温度对二甲醚水蒸气重整制氢Cu/ZnO/Al2O3/Cr2O3+H-ZSM-5双功能催化剂性能的影响[J]. 燃料化学学报, 2012, 40(10): 1240-1245.

    25. [25]

      (LI Juan, HAI Hang, YAN Chang-feng, HU Rong-rong, YAO Zhi-wei, LUO Wei-min, GUO Chang-qing, LI Wen-bo. Effect of calcination temperature on properties of Cu/ZnO/Al2O3/Cr2O3+HZSM-5 bi-functional catalysts for steam reforming of dimethyl ether[J]. Journal of Fuel Chemistry and Technology, 2012, 40(10): 1240-1245.)

    26. [26]

      [19] 刘智信, 李东风. 多孔金属在催化中的作用[J]. 金属功能材料, 2004, 11(2): 35-37.

    27. [27]

      (LIU Zhi-xin, LI Dong-feng. The role of the porous metal in the catalytic[J]. Metallic Function Materials, 2004, 11(2): 35-37.)

    28. [28]

      [20] 高军, 董新法, 林维明. 泡沫金属微反应器内富氢重整气中CO选择性甲烷化[J]. 燃料化学学报, 2010, 38(3): 337-342.

    29. [29]

      (GAO Jun, DONG Xin-fa, LIN Wei-ming. Selective catalytic methanation of CO in hydrogen-rich gas with a metal foam microreactor[J]. Journal of Fuel Chemistry and Technology, 2010, 38(3): 337-342.

    30. [30]

      [21] FAUNGNAWAKIJ K, EGUCHI K. Dimethyl ether-reforming catalysts for hydrogen production[J]. Catal Surv Asia, 2011, 15(1): 12-24.

  • 加载中
    1. [1]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    2. [2]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    3. [3]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    4. [4]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    5. [5]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    6. [6]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    7. [7]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    8. [8]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    9. [9]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    10. [10]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    11. [11]

      Haiyu ZhuZhuoqun WenWen XiongXingzhan WeiZhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078

    12. [12]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    13. [13]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    14. [14]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    15. [15]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    16. [16]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    17. [17]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    18. [18]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    19. [19]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    20. [20]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

Metrics
  • PDF Downloads(0)
  • Abstract views(459)
  • HTML views(60)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return