Citation:
WANG Chang-zhen, SI Lan-jie, LI Hai, WEN Xia, SUN Nan-nan, ZHAO Ning, WEI Wei, SUN Yu-han. Template-free one-pot synthesis of mesoporous Ni-CaO-ZrO2 catalyst and its application in CH4-CO2 reforming[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(10): 1204-1209.
-
A novel mesoporous Ni-CaO-ZrO2 catalyst with high surface area and pore volume was prepared by one-pot template-free method and applied in CH4-CO2 reforming. The mesoporous Ni-CaO-ZrO2 catalyst was characterized by means of nitrogen sorption, SEM, TEM, XRD, H2-TPR and TG-DSC. The results indicated that a strong metal support interaction (SMSI) present in the Ni-CaO-ZrO2 catalyst induces an intimate contact between Ni and ZrO2 nano-particles, which is favorable for the surface reaction of adsorbed reactant species for CH4-CO2 reforming. Owing to the mesoporous framework and SMSI, the Ni-CaO-ZrO2 catalyst shows promising activity and stability in CH4-CO2 reforming. Most of the carbonaceous deposits on the catalyst surface are in whisker form, which does not cover the active sites and then has little influence on the catalyst stability.
-
-
-
[1]
[1] CRISAFULLI C, SRIRE S, MAGGIORE R, MINICO S, GALVAGNO S. CO2 reforming of methane over Ni-Ru and Ni-Pd bimetallic catalysts[J]. Catal Lett, 1999, 59: 21-26.
-
[2]
[2] MESHKANI F, REZAEI M. Nanocrystalline MgO supported nickel-based bimetallic catalysts for carbon dioxide reforming of methane[J]. Int J Hydrog Energy, 2010, 35(19): 10295-10301.
-
[3]
[3] HOU Z Y, YASHIMA T. Meso-porous Ni/Mg/Al catalysts for methane reforming with CO2[J]. Appl Catal A: Gen, 2004, 261(2): 205-209.
-
[4]
[4] BITTER J H, SESHAN K, LERCHER J A. Deactivation and coke accumulation during CO2/CH4 reforming over Pt catalysts[J]. J Catal, 1999, 183(2): 336-343.
-
[5]
[5] SUN N N, WEN X, WANG F, WEI W, SUN Y H. Effect of pore structure on Ni catalyst for CO2 reforming of CH4[J]. Energy Environ Sci, 2010, 3(3): 366-369.
-
[6]
[6] WANG C Z, SUN N N, KANG M, WEN X, ZHAO N, XIAO F K, WEI W, ZHAO T J, SUN Y H. The Bi-functional mechanism of CH4 dry reforming over a Ni-CaO-ZrO2 catalyst: Further evidence via active sites identification and kinetic studies[J]. Catal Sci Tech, 2013, 3: 2435-2443.
-
[7]
[7] SUN N N, WEN X, WANG F, PENG W C, ZHAO N, XIAO F K, WEI W, SUN Y H, KANG J T. Catalytic performance and characterization of Ni-CaO-ZrO2 catalysts for dry reforming of methane[J]. Appl Surf Sci, 2011, 257(21): 9169-9176.
-
[8]
[8] BRADFORD M C J, VANNICE M A. CO2 reforming of CH4[J]. Catal Rev Sci Eng, 1999, 41(1): 1-42.
-
[9]
[9] SOUZA M, ARANDA D A G, SCHMAL M. Reforming of methane with carbon dioxide over Pt/ZrO2/Al2O3 catalysts[J]. J Catal, 2001, 204(2): 498-511.
-
[10]
[10] HU Y H, RUCKENSTEIN E. Binarty mgo-based solid solution catalysts for methane conversion to syngas[J]. Catal Rev, 2002, 44(3): 423-453.
-
[11]
[11] SUN N N, WEN X, WANG F, PENG W C, XIAO F K, WEI W, SUN Y H. Influence of Ni content on catalytic performance of Ni-CaO-ZrO2 catalysts in CH4-CO2 reforming[J]. Fine Chem, 2010, 27(10): 1004-1008.
-
[12]
[12] HU Y H, RUCKENSTEIN E. Catalytic conversion of methane to synthesis gas by partial oxidation and CO2 reforming[J]. Adv Catal, 2004, 48: 297-345.
-
[13]
[13] GAO J, LOU H, ZHENG X M. Dry (CO2) reforming[J]. Fuel Cells, 2011, 191-221.
-
[14]
[14] JIANG H T, HUA W, JI J B. Study of coke deposition on Ni catalysts for methane reforming to syngas[J]. Prog Chem, 2013, 25(5): 859-868.
-
[15]
[15] GUO J, LOU H, ZHENG X. The deposition of coke from methane on a Ni/MgAl2O4 catalyst[J]. Carbon, 2007, 45(6): 1314-1321.
-
[16]
[16] XU J, ZHOU W, WANG J, LI Z, MA J. Characterization and analysis of carbon deposited during the dry reforming of methane over Ni/La2O3/Al2O3 catalysts[J]. Chinese of Journal Catalysis, 2009, 30(11): 1076-1084.
-
[17]
[17] FRUSTERI F, SPADARO L, ARENA F, CHUVILIN A. TEM evidence for factors affecting the genesis of carbon species on bare and K-promoted Ni/MgO catalysts during the dry reforming of methane[J]. Carbon, 2002, 40(7): 1063-1070.
-
[18]
[18] PERENIGUEZ R, GONZALEZ-DELACRUZ V M, CABALLERO A, HOLGADO J P. LaNiO3 as a precursor of Ni/La2O3 for CO2 reforming of CH4: Effect of the presence of an amorphous NiO phase[J]. Appl Catal B: Environ, 2012, 123: 324-332.
-
[1]
-
-
-
[1]
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
-
[2]
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
-
[3]
Zixuan Zhao , Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040
-
[4]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[5]
Honghong Zhang , Zhen Wei , Derek Hao , Lin Jing , Yuxi Liu , Hongxing Dai , Weiqin Wei , Jiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073
-
[6]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[7]
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
-
[8]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[9]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[10]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[11]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[12]
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
-
[13]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[14]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[15]
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
-
[16]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[17]
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049
-
[18]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[19]
Wang Wang , Yucheng Liu , Shengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059
-
[20]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(482)
- HTML views(20)