Citation:
LIU He, CHEN Kun, WANG Zong-xian, GUO Ai-jun. Evaluation of relative hydrogen-donating abilities of different heavy oils during mild thermal conversion by 1H-NMR[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(10): 1191-1198.
-
The relative hydrogen-donating abilities of different heavy oils were determined by 1H-NMR. Three typical heavy residues and the corresponding subfractions were thermally treated with equal weight of chemical accepting probe (i.e. anthracene) at 380℃ for 8 min under the nitrogen pressure of 4MPa; the toluene insoluble yield, gas yield and composition, and the distillation curve of liquid products were determined. The results show that the thermal reaction of samples under the testing conditions is relatively moderate with no apparent structural changes. By comparing the hydrogen distribution of samples with that of residues after reaction, it is proved that the primary reaction during the thermal process can make the hydrogen transfer from oil samples to anthracene. The reduction value of the hydrogen content of Hcβ(chemical shift ranging from 1.4~2.0 in 1H-NMR spectrum, representing naphthenic hydrogen two positions from the aromatic ring of naphtheno-aromatics) and Hcα (chemical shift ranging from 2.5~4.7 in 1H-NMR spectrum, representing hydrogen on naphthenic ring adjacent to fused aromatic ring of naphtheno-aromatic) is correlated well to the donated hydrogen content measured by chemical method. Thus it is reasonable to regard Hcβ and Hcα as the main donated hydrogen during mild thermal conversion of heavy oils, and to entatively evaluate the relative hydrogen-donating ability of heavy oil using the two type protons content in 1H-NMR is acceptable.
-
-
-
[1]
[1] WALLACE S, BARTLE K D, BURKE M P, EGIA B, LU S, TAYLOR N, FLYNN T, KEMP W. STEEDMAN W. Characterization of petroleum feedstocks for coal-oil co-processing[J]. Fuel, 1989, 68(8): 961-967.
-
[2]
[2] RINCON J M, ANGULO R. Petroleum heavy oil mixtures as a source of hydrogen in the liquefaction of Cerrejon coal[J]. Fuel, 1986, 65(7): 899-902.
-
[3]
[3] LANGER A W, STEWART J, THOMPSON C E, WHITE H T, HILL R M. Hydrogen donor diluent visbreaking of residua[J]. Ind Eng Chem Process Des Dev, 1962, 1(4): 309-312.
-
[4]
[4] 郭爱军, 王宗贤, 张会军, 王治卿. 减压渣油掺炼工业供氢剂缓和热转化的基础研究[J]. 燃料化学学报, 2007, 35(6): 667-672.
-
[5]
(GUO Ai-jun, WANG Zong-xian, ZHANG Hui-jun, WANG Zhi-qing. Fundamental study on mild thermal cracking of vacuum residue with industrial hydrogen donors[J]. Journal of Fuel Chemistry and Technology, 2007, 35(6): 667-672.)
-
[6]
[5] 刘东, 邓文安, 周家顺, 梁士昌, 王宗贤, 阙国和. 辽河减压渣油供氢减粘裂化反应性能研究[J]. 石油大学学报(自然科学版), 2002, 26(2): 86-87.
-
[7]
(LIU Dong, DENG Wen-an, ZHOU Jia-shun, LIANG Shi-chang, WANG Zong-xian, QUE Guo-he. Study on visbreaking reaction of Liaohe vacuum residue with hydrogen donor[J]. Journal of the University of Petroleum, China, 2002, 26(2): 86-87.)
-
[8]
[6] CARLSON C S, LANGER A W, STEWART J, HILL R M. Thermal hydrogenation. Transfer of hydrogen from tetralin to cracked residua[J]. Ind Eng Chem, 1958, 50(7): 1067-1070.
-
[9]
[7] 王治卿, 王宗贤. 减压渣油供氢剂减黏裂化研究[J]. 燃料化学学报, 2006, 34(6): 745-748.
-
[10]
(WANG Zhi-qing, WANG Zong-xian. Roles of hydrogen donor in visbreaking of vacuum resiude[J]. Journal of Fuel Chemistry and Technology, 2006, 34(6): 745-748.)
-
[11]
[8] 张会成, 邓文安, 阙国和. 胜利渣油在掺兑物下热反应体系的相态分离行为[J]. 燃料化学学报, 1997, 25(3), 227-232.
-
[12]
(ZHANG Hui-cheng, DENG Wen-an, QUE Guo-he. Phase separation behaviors of Shengli vacuum residue in thermal reaction system with liquid blends[J]. Journal of Fuel Chemistry and Technology, 1997, 25(3), 227-232.)
-
[13]
[9] DEL BIANCO A, PANARITI N, PRANDINI B, BELTRAME P L, CARNITI P. Thermal cracking of petroleum residues: 2. Hydrogen-donor solvent addition[J]. Fuel, 1993, 72(1): 81-85.
-
[14]
[10] OBARA T, YOKONO T, SANADA Y. Relationships between hydrogen donor abilities and chemical structure of aromatic compounds in terms of coal liquefaction[J]. Fuel, 1983, 62(7): 813-816.
-
[15]
[11] ROSAL R, DÍEZ F V, SASTRE H. Estimation of the concentration of hydroaromatic compounds in a hydrogenated anthracene oil[J]. Fuel, 1992, 71(7): 761-765.
-
[16]
[12] CURTIS C W, GUIN J A, HALE M A, SMITH N L. Contribution of transferable hydrogen to coal conversion[J]. Fuel, 1985, 64(4): 461-469.
-
[17]
[13] OBARA T, YOKONO T, MIYAZAWA K, SANADA Y. Carbonization behavior of hydrogenated ethylene tar pitch[J]. Carbon, 1981, 19(4): 263-267.
-
[18]
[14] YOKONO T, MARSH H, YOKONO M. Hydrogen donor and acceptor abilities of pitch: 1H n.m.r. study of hydrogen transfer to anthracene[J]. Fuel, 1981, 60(7): 607-611.
-
[19]
[15] GOULD K A, WIEHE I A. Natural hydrogen donors in petroleum resids[J]. Energy Fuels, 2006, 21(3): 1199-1204.
-
[20]
[16] GUO A J, WANG Z, ZHANG H J, ZHANG X J, WANG Z X. Hydrogen transfer and coking propensity of petroleum residues under thermal processing[J]. Energy Fuels, 2010, 24(5), 3093-3100.
-
[21]
[17] 郭爱军, 王宗贤, 阙国和. 饱和烃热裂化夺氢氢转移能力研究[J]. 燃料化学学报, 2001, 29(5): 404-407.
-
[22]
(GUO Ai-jun, WANG Zong-xian, QUE Guo-he. Study on the hydrogen abstraction abilities of saturate hydrocarbons under thermal cracking[J]. Journal of Fuel Chemistry and Technology, 2001, 29(5): 404-407.)
-
[23]
[18] 王治卿. 渣油热反应体系胶体化学与氢转移行为研究[D]. 山东: 中国石油大学, 2006.
-
[24]
(WANG Zhi-qing. Research on the colloidal stability and hydrogen-transfer of vacuum residue during thermal conversion[D]. Shandong: China University of Petroleum, 2006.)
-
[25]
[19] AIURA M, MASUNAGA T, MORIYA K, KAGEYAMA Y. Chemistry of solvents in coal liquefaction: Quantification of transferable hydrogen in coal-derived solvents[J]. Fuel, 1984, 63(8): 1138-1142.
-
[26]
[20] DIÍEZ M A, DOMIÍNGUEZ A, BARRIOCANAL C, ALVAREZ R, BLANCO C G, CANGA C S. Hydrogen donor and acceptor abilities of pitches from coal and petroleum evaluated by gas chromatography[J]. J Chromatogr A, 1999, 830(1): 155-164.
-
[27]
[21] WINSCHEL R A, ROBBINS G A, BURKE F P. Correlation of microautoclave and 1H n.m.r. measurements of coal liquefaction solvent quality[J]. Fuel, 1986, 65(4): 526-532.
-
[28]
[22] SWANSIGER J T, BEST H T, DANNER D A, YOUNGLESS T L. Determination of transferrable hydrogen in coal liquids by mass spectrometry[J]. Anal Chem, 1982, 54(14): 2576-2582.
-
[29]
[23] CLARKE J W, RANTELL T D, SNAPE C E. Estimation of the concentration of donatable hydrogen in a coal solvent by n.m.r.[J]. Fuel, 1982, 61(8): 707-712.
-
[30]
[24] BIANCO A D, ZANINELLI M, GIRARDI E. Determination of transferable hydrogen in coal liquefaction solvents by spectroscopic methods[J]. Fuel, 1986, 65(8): 1062-1066.
-
[31]
[25] SESHADRI K S, RUBERTO R G, JEWELL D M, MALONE H P. Application of carbon-13 nuclear magnetic resonance spectrometry to coal chemistry: Calculation of transferable hydrogen[J]. Fuel, 1978, 57(9): 549-554.
-
[32]
[26] DELPUECH J J, NICOLE D, ROUX M L, CHICHE P, PRGERMAIN S. Coal liquefaction solvents: An n.m.r. analysis of a recycle oil over successive passes[J]. Fuel, 1986, 65(11): 1600-1607.
-
[33]
[27] RAHIMI P M, DAWSON W H, KELLY J F. Determination of hydrogen donor ability of heavy oils/bitumens and its effect on coal dissolution[J]. Fuel, 1991, 70(1): 95-99.
-
[34]
[28] CHEN K, LIU H, GUO A, GE D, WANG Z. Study of the thermal performance and interaction of petroleum residue fractions during the coking process[J]. Energy Fuels, 2012, 26(10): 6343-6351.
-
[35]
[29] TOMIC J, SCHOBERT H H. Coal/petroleum residuum interactions during co-processing under non-catalytic, low solvent/coal ratio conditions[J]. Energy Fuels, 1997, 11(1): 116-125.
-
[36]
[30] YANG C, Gu K, Wu W. Analytical methods for petrochemicals (RIPP Tests)[C]. Beijing: Science Press, 1990: 31-33.
-
[37]
[31] MALZ F, JANCKE H. Validation of quantitative NMR[J]. J Pharm Biomed Anal, 2005, 38(5): 813-823.
-
[38]
[32] UEMASU I, KUSHIYAMA S. Analysis of 9, 10-dihydroanthracene by capillary gas chromatography for evaluation of transferable hydrogen in heavy oils[J]. J. Chromatogr., 1986, 368(2): 387-390.
-
[39]
[33] BERMEJO J, CANGA J S, GUILLEN M D, GAYOL O M, BLANCO C G. Evidence for hydrogen donor-acceptor behaviour of 9,10-dihydroanthracene in thermal reactions with coals and pitches[J]. Fuel Process Technol, 1990, 24: 157-162.
-
[40]
[34] 王宗贤, 何岩, 郭爱军, 张宏玉, 阙国和. 辽河和孤岛渣油供氢能力与生焦趋势[J]. 燃料化学学报, 1999, 27(3), 251-255.
-
[41]
(WANG Zong-xian, HE Yan, GUO Ai-jun, ZHANG Hong-yu, QUE Guo-he. Study on hydrogen-donating ability of vacuum residues and their subfractions[J]. Journal of Fuel Chemistry and Technology, 1999, 27(3), 251-255.)
-
[42]
[35] IYAMA S, YOKONO T, SANADA Y. Development of anisotropic texture in co-carbonization of low rank coal with pitch-evaluation from hydrogen donor and acceptor abilities of coal and pitch[J]. Carbon, 1986, 24(4): 423-428.
-
[43]
[36] 董喜贵, 雷群芳, 俞庆森. 石油沥青质的NMR测定及其模型分子推测[J]. 燃料化学学报, 2004, 32(6): 668-672.
-
[44]
(DONG Xi-gui, LEI Qun-fang, YU Qing-sen. NMR determination of petroleum asphaltenes and their model molecules evaluation[J]. Journal of Fuel Chemistry and Technology, 2004, 32(6): 668-672.)
-
[45]
[37] PADZIOREK T, IHNATOWICZ M, RUSIN A. Influence of solvent chemical structure on the conversion of a flame coal and properties of liquid hydrogenation products[J]. Fuel, 1992, 71(6): 641-647.
-
[46]
[38] LETT R G, CUGINI A V. Proceedings of DOE Direct Liquefaction Contractors Review Meeting[C]. USA, 1986: 362-378.
-
[1]
-
-
-
[1]
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
-
[2]
Ling-Hao Zhao , Hai-Wei Yan , Jian-Shuang Jiang , Xu Zhang , Xiang Yuan , Ya-Nan Yang , Pei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863
-
[3]
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032
-
[4]
Yu Xiong , Li-Jun Hu , Jian-Guo Song , Di Zhang , Yi-Shuang Peng , Xiao-Jun Huang , Jian Hong , Bin Zhu , Wen-Cai Ye , Ying Wang . Structure elucidation of plumerubradins A–C: Correlations between 1H NMR signal patterns and structural information of [2+2]-type cyclobutane derivatives. Chinese Chemical Letters, 2025, 36(5): 110149-. doi: 10.1016/j.cclet.2024.110149
-
[5]
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067
-
[6]
Runze Liu , Yankai Bian , Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250
-
[7]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[8]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[9]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[10]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[11]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[12]
Yue Zhao , Yanfei Li , Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001
-
[13]
Linjie ZHU , Xufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207
-
[14]
Yu'ang Liu , Yuechao Wu , Junyu Huang , Tao Wang , Xiaohong Liu , Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112
-
[15]
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
-
[16]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
-
[17]
Junqing WEN , Ruoqi WANG , Jianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243
-
[18]
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
-
[19]
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
-
[20]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(650)
- HTML views(82)