Citation: LIU He, CHEN Kun, WANG Zong-xian, GUO Ai-jun. Evaluation of relative hydrogen-donating abilities of different heavy oils during mild thermal conversion by 1H-NMR[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(10): 1191-1198. shu

Evaluation of relative hydrogen-donating abilities of different heavy oils during mild thermal conversion by 1H-NMR

  • Corresponding author: WANG Zong-xian, 
  • Received Date: 25 December 2012
    Available Online: 11 February 2013

    Fund Project: 中国石油天然气股份有限公司委内瑞拉超重油减黏基础研究项目(2008E-1502/2) (2008E-1502/2)中国石油大学(华东)研究生创新工程(CX-1216)。 (华东)研究生创新工程(CX-1216)

  • The relative hydrogen-donating abilities of different heavy oils were determined by 1H-NMR. Three typical heavy residues and the corresponding subfractions were thermally treated with equal weight of chemical accepting probe (i.e. anthracene) at 380℃ for 8 min under the nitrogen pressure of 4MPa; the toluene insoluble yield, gas yield and composition, and the distillation curve of liquid products were determined. The results show that the thermal reaction of samples under the testing conditions is relatively moderate with no apparent structural changes. By comparing the hydrogen distribution of samples with that of residues after reaction, it is proved that the primary reaction during the thermal process can make the hydrogen transfer from oil samples to anthracene. The reduction value of the hydrogen content of H(chemical shift ranging from 1.4~2.0 in 1H-NMR spectrum, representing naphthenic hydrogen two positions from the aromatic ring of naphtheno-aromatics) and H(chemical shift ranging from 2.5~4.7 in 1H-NMR spectrum, representing hydrogen on naphthenic ring adjacent to fused aromatic ring of naphtheno-aromatic) is correlated well to the donated hydrogen content measured by chemical method. Thus it is reasonable to regard H and H as the main donated hydrogen during mild thermal conversion of heavy oils, and to entatively evaluate the relative hydrogen-donating ability of heavy oil using the two type protons content in 1H-NMR is acceptable.
  • 加载中
    1. [1]

      [1] WALLACE S, BARTLE K D, BURKE M P, EGIA B, LU S, TAYLOR N, FLYNN T, KEMP W. STEEDMAN W. Characterization of petroleum feedstocks for coal-oil co-processing[J]. Fuel, 1989, 68(8): 961-967.

    2. [2]

      [2] RINCON J M, ANGULO R. Petroleum heavy oil mixtures as a source of hydrogen in the liquefaction of Cerrejon coal[J]. Fuel, 1986, 65(7): 899-902.

    3. [3]

      [3] LANGER A W, STEWART J, THOMPSON C E, WHITE H T, HILL R M. Hydrogen donor diluent visbreaking of residua[J]. Ind Eng Chem Process Des Dev, 1962, 1(4): 309-312.

    4. [4]

      [4] 郭爱军, 王宗贤, 张会军, 王治卿. 减压渣油掺炼工业供氢剂缓和热转化的基础研究[J]. 燃料化学学报, 2007, 35(6): 667-672.

    5. [5]

      (GUO Ai-jun, WANG Zong-xian, ZHANG Hui-jun, WANG Zhi-qing. Fundamental study on mild thermal cracking of vacuum residue with industrial hydrogen donors[J]. Journal of Fuel Chemistry and Technology, 2007, 35(6): 667-672.)

    6. [6]

      [5] 刘东, 邓文安, 周家顺, 梁士昌, 王宗贤, 阙国和. 辽河减压渣油供氢减粘裂化反应性能研究[J]. 石油大学学报(自然科学版), 2002, 26(2): 86-87.

    7. [7]

      (LIU Dong, DENG Wen-an, ZHOU Jia-shun, LIANG Shi-chang, WANG Zong-xian, QUE Guo-he. Study on visbreaking reaction of Liaohe vacuum residue with hydrogen donor[J]. Journal of the University of Petroleum, China, 2002, 26(2): 86-87.)

    8. [8]

      [6] CARLSON C S, LANGER A W, STEWART J, HILL R M. Thermal hydrogenation. Transfer of hydrogen from tetralin to cracked residua[J]. Ind Eng Chem, 1958, 50(7): 1067-1070.

    9. [9]

      [7] 王治卿, 王宗贤. 减压渣油供氢剂减黏裂化研究[J]. 燃料化学学报, 2006, 34(6): 745-748.

    10. [10]

      (WANG Zhi-qing, WANG Zong-xian. Roles of hydrogen donor in visbreaking of vacuum resiude[J]. Journal of Fuel Chemistry and Technology, 2006, 34(6): 745-748.)

    11. [11]

      [8] 张会成, 邓文安, 阙国和. 胜利渣油在掺兑物下热反应体系的相态分离行为[J]. 燃料化学学报, 1997, 25(3), 227-232.

    12. [12]

      (ZHANG Hui-cheng, DENG Wen-an, QUE Guo-he. Phase separation behaviors of Shengli vacuum residue in thermal reaction system with liquid blends[J]. Journal of Fuel Chemistry and Technology, 1997, 25(3), 227-232.)

    13. [13]

      [9] DEL BIANCO A, PANARITI N, PRANDINI B, BELTRAME P L, CARNITI P. Thermal cracking of petroleum residues: 2. Hydrogen-donor solvent addition[J]. Fuel, 1993, 72(1): 81-85.

    14. [14]

      [10] OBARA T, YOKONO T, SANADA Y. Relationships between hydrogen donor abilities and chemical structure of aromatic compounds in terms of coal liquefaction[J]. Fuel, 1983, 62(7): 813-816.

    15. [15]

      [11] ROSAL R, DÍEZ F V, SASTRE H. Estimation of the concentration of hydroaromatic compounds in a hydrogenated anthracene oil[J]. Fuel, 1992, 71(7): 761-765.

    16. [16]

      [12] CURTIS C W, GUIN J A, HALE M A, SMITH N L. Contribution of transferable hydrogen to coal conversion[J]. Fuel, 1985, 64(4): 461-469.

    17. [17]

      [13] OBARA T, YOKONO T, MIYAZAWA K, SANADA Y. Carbonization behavior of hydrogenated ethylene tar pitch[J]. Carbon, 1981, 19(4): 263-267.

    18. [18]

      [14] YOKONO T, MARSH H, YOKONO M. Hydrogen donor and acceptor abilities of pitch: 1H n.m.r. study of hydrogen transfer to anthracene[J]. Fuel, 1981, 60(7): 607-611.

    19. [19]

      [15] GOULD K A, WIEHE I A. Natural hydrogen donors in petroleum resids[J]. Energy Fuels, 2006, 21(3): 1199-1204.

    20. [20]

      [16] GUO A J, WANG Z, ZHANG H J, ZHANG X J, WANG Z X. Hydrogen transfer and coking propensity of petroleum residues under thermal processing[J]. Energy Fuels, 2010, 24(5), 3093-3100.

    21. [21]

      [17] 郭爱军, 王宗贤, 阙国和. 饱和烃热裂化夺氢氢转移能力研究[J]. 燃料化学学报, 2001, 29(5): 404-407.

    22. [22]

      (GUO Ai-jun, WANG Zong-xian, QUE Guo-he. Study on the hydrogen abstraction abilities of saturate hydrocarbons under thermal cracking[J]. Journal of Fuel Chemistry and Technology, 2001, 29(5): 404-407.)

    23. [23]

      [18] 王治卿. 渣油热反应体系胶体化学与氢转移行为研究[D]. 山东: 中国石油大学, 2006.

    24. [24]

      (WANG Zhi-qing. Research on the colloidal stability and hydrogen-transfer of vacuum residue during thermal conversion[D]. Shandong: China University of Petroleum, 2006.)

    25. [25]

      [19] AIURA M, MASUNAGA T, MORIYA K, KAGEYAMA Y. Chemistry of solvents in coal liquefaction: Quantification of transferable hydrogen in coal-derived solvents[J]. Fuel, 1984, 63(8): 1138-1142.

    26. [26]

      [20] DIÍEZ M A, DOMIÍNGUEZ A, BARRIOCANAL C, ALVAREZ R, BLANCO C G, CANGA C S. Hydrogen donor and acceptor abilities of pitches from coal and petroleum evaluated by gas chromatography[J]. J Chromatogr A, 1999, 830(1): 155-164.

    27. [27]

      [21] WINSCHEL R A, ROBBINS G A, BURKE F P. Correlation of microautoclave and 1H n.m.r. measurements of coal liquefaction solvent quality[J]. Fuel, 1986, 65(4): 526-532.

    28. [28]

      [22] SWANSIGER J T, BEST H T, DANNER D A, YOUNGLESS T L. Determination of transferrable hydrogen in coal liquids by mass spectrometry[J]. Anal Chem, 1982, 54(14): 2576-2582.

    29. [29]

      [23] CLARKE J W, RANTELL T D, SNAPE C E. Estimation of the concentration of donatable hydrogen in a coal solvent by n.m.r.[J]. Fuel, 1982, 61(8): 707-712.

    30. [30]

      [24] BIANCO A D, ZANINELLI M, GIRARDI E. Determination of transferable hydrogen in coal liquefaction solvents by spectroscopic methods[J]. Fuel, 1986, 65(8): 1062-1066.

    31. [31]

      [25] SESHADRI K S, RUBERTO R G, JEWELL D M, MALONE H P. Application of carbon-13 nuclear magnetic resonance spectrometry to coal chemistry: Calculation of transferable hydrogen[J]. Fuel, 1978, 57(9): 549-554.

    32. [32]

      [26] DELPUECH J J, NICOLE D, ROUX M L, CHICHE P, PRGERMAIN S. Coal liquefaction solvents: An n.m.r. analysis of a recycle oil over successive passes[J]. Fuel, 1986, 65(11): 1600-1607.

    33. [33]

      [27] RAHIMI P M, DAWSON W H, KELLY J F. Determination of hydrogen donor ability of heavy oils/bitumens and its effect on coal dissolution[J]. Fuel, 1991, 70(1): 95-99.

    34. [34]

      [28] CHEN K, LIU H, GUO A, GE D, WANG Z. Study of the thermal performance and interaction of petroleum residue fractions during the coking process[J]. Energy Fuels, 2012, 26(10): 6343-6351.

    35. [35]

      [29] TOMIC J, SCHOBERT H H. Coal/petroleum residuum interactions during co-processing under non-catalytic, low solvent/coal ratio conditions[J]. Energy Fuels, 1997, 11(1): 116-125.

    36. [36]

      [30] YANG C, Gu K, Wu W. Analytical methods for petrochemicals (RIPP Tests)[C]. Beijing: Science Press, 1990: 31-33.

    37. [37]

      [31] MALZ F, JANCKE H. Validation of quantitative NMR[J]. J Pharm Biomed Anal, 2005, 38(5): 813-823.

    38. [38]

      [32] UEMASU I, KUSHIYAMA S. Analysis of 9, 10-dihydroanthracene by capillary gas chromatography for evaluation of transferable hydrogen in heavy oils[J]. J. Chromatogr., 1986, 368(2): 387-390.

    39. [39]

      [33] BERMEJO J, CANGA J S, GUILLEN M D, GAYOL O M, BLANCO C G. Evidence for hydrogen donor-acceptor behaviour of 9,10-dihydroanthracene in thermal reactions with coals and pitches[J]. Fuel Process Technol, 1990, 24: 157-162.

    40. [40]

      [34] 王宗贤, 何岩, 郭爱军, 张宏玉, 阙国和. 辽河和孤岛渣油供氢能力与生焦趋势[J]. 燃料化学学报, 1999, 27(3), 251-255.

    41. [41]

      (WANG Zong-xian, HE Yan, GUO Ai-jun, ZHANG Hong-yu, QUE Guo-he. Study on hydrogen-donating ability of vacuum residues and their subfractions[J]. Journal of Fuel Chemistry and Technology, 1999, 27(3), 251-255.)

    42. [42]

      [35] IYAMA S, YOKONO T, SANADA Y. Development of anisotropic texture in co-carbonization of low rank coal with pitch-evaluation from hydrogen donor and acceptor abilities of coal and pitch[J]. Carbon, 1986, 24(4): 423-428.

    43. [43]

      [36] 董喜贵, 雷群芳, 俞庆森. 石油沥青质的NMR测定及其模型分子推测[J]. 燃料化学学报, 2004, 32(6): 668-672.

    44. [44]

      (DONG Xi-gui, LEI Qun-fang, YU Qing-sen. NMR determination of petroleum asphaltenes and their model molecules evaluation[J]. Journal of Fuel Chemistry and Technology, 2004, 32(6): 668-672.)

    45. [45]

      [37] PADZIOREK T, IHNATOWICZ M, RUSIN A. Influence of solvent chemical structure on the conversion of a flame coal and properties of liquid hydrogenation products[J]. Fuel, 1992, 71(6): 641-647.

    46. [46]

      [38] LETT R G, CUGINI A V. Proceedings of DOE Direct Liquefaction Contractors Review Meeting[C]. USA, 1986: 362-378.

  • 加载中
    1. [1]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    2. [2]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

    3. [3]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    4. [4]

      Yu XiongLi-Jun HuJian-Guo SongDi ZhangYi-Shuang PengXiao-Jun HuangJian HongBin ZhuWen-Cai YeYing Wang . Structure elucidation of plumerubradins A–C: Correlations between 1H NMR signal patterns and structural information of [2+2]-type cyclobutane derivatives. Chinese Chemical Letters, 2025, 36(5): 110149-. doi: 10.1016/j.cclet.2024.110149

    5. [5]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    6. [6]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    7. [7]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    8. [8]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    9. [9]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    10. [10]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    11. [11]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    13. [13]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    14. [14]

      Yu'ang Liu Yuechao Wu Junyu Huang Tao Wang Xiaohong Liu Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112

    15. [15]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    16. [16]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    17. [17]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    18. [18]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    19. [19]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    20. [20]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

Metrics
  • PDF Downloads(0)
  • Abstract views(649)
  • HTML views(82)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return