Citation:
LV Jian-yi, SHI Xiao-bin. Physicochemical properties and formation mechanism of soot during biomass burning[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(10): 1184-1190.
-
Cotton stalk and wood scraps were burnt in a tube furnace to generate soot under different combustion conditions. Soot particles were sampled and detected by TEM, EDS and GC-MS to study their physicochemical properties, then the formation mechanics of soot during biomass burning was deduced. The results show that the typical morphological structures of soot are capsule-like, spherical, catenulated and reticular. Combustion conditions enfluence the burning process and result in the different morphology of the soot. The soot particles collided and coagulated during nucleation and growth of soot, which leads to formation of complicated clustered particles. During biomass burning the soot is mainly generated from pyrolysis of cellulose, which contains furfurans, phenols, aldehydes, furans, alkanes and alkenes. The formation mechanics of soot has been speculated. During burning of biomass, the chemical bonds of cellulose fractured and restructured, which generate CO, CO2, residual carbon molecule fragments, and so on. Then residual carbon goes on a series of reactions such as reforming, dehydration, carbonization and bond-breaking to generate aldehydes and ketones. And these compounds polymerized and cyclized to form benzene ring structure, and further converted to toluenes and phenols.
-
Keywords:
- biomass buring,
- soot,
- physicochemical properties,
- formation mechanics
-
-
-
[1]
[1] 于娜, 魏永杰, 胡敏, 曾立民, 张远航. 北京城区和郊区大气细粒子有机物污染特征及来源解析[J]. 环境科学学报, 2009, 29(2): 243-251.
-
[2]
(YU Na, WEI Yong-jie, HU Min, ZENG Li-min, ZHANG Yuan-hang. Characterization and source identification of ambient organic carbon in PM2.5 in urban and suburban sites of Beijing[J]. Acta Scientiae Circumstantiae, 2009, 29(2): 243-251.)
-
[3]
[2] LIGHTY J S, VERANTH J M, SAROFIM A F. Combustion aerosols: Factors governing their size and composition and implications to human health[J]. J Air Waste Manage Assoc, 2009, 50(9): 1565-1611.
-
[4]
[3] DAVID M B, RAVID R. Deposition of fractal-like soot aggregates in the human respiratory tract[J]. J Aerosol Sci, 2011, 42(6): 372-386.
-
[5]
[4] RICHTER H, HOWARD J B. Formation of polycyclic aromatic hydrocarbons and their growth to soot-A review of chemical reaction pathways[J]. Prog Energy Combust Sci, 2000, 26(4/6): 565-608.
-
[6]
[5] 吕建燚, 翁清龙. 乙烯/空气反扩散火焰中气体温度及碳烟体积分数的分布特征[J]. 化学学报, 2011, 69(8): 1011-1016.
-
[7]
(LU Jian-yi, WENG Qing-long. Distribution characteristics of gas temperature and soot fraction volume in ethylene/air inverse diffusion flame[J]. Acta Chim Sinica, 2011, 69(8): 1011-1016.)
-
[8]
[6] SOMMERSACHER P, BRUNNER T, OBERNBERGER I. Fuel indexes: A novel method for the evaluation of relevant combustion properties of new biomass fuels[J]. Energy Fuels, 2012, 26(1): 380-390.
-
[9]
[7] FITZPATRICK E M, JONES J M, POURKASHANIAN M, ROSS A B, WILLIAMS A, BARTLE K D. Mechanistic aspects of soot formation from the combustion of pine wood[J]. Energy Fuels, 2008, 22(6): 3771-3778.
-
[10]
[8] MARICQ M M. Physical and chemical comparison of soot in hydrocarbon and biodiesel fuel diffusion flames: A study of model and commercial fuel[J]. Combust Flame, 2011, 158(1): 105-116.
-
[11]
[9] 卓建坤, 李水清, 宋蔷, 姚强. 煤粉燃烧火焰区域中碳烟的结构和行为[J]. 燃烧科学与技术, 2009, 15(1): 74-81.
-
[12]
(ZHUO Jian-kun, LI Shui-qing, Song Qiang, YAO Qiang. Structure and behavior of soot in pulverized-coal flame[J]. Journal of Combustion Science and Technology, 2009, 15(1): 74-81.)
-
[13]
[10] STANMORE B R, BRILHAC J F, GILOT P. The oxidation of soot: A review of experiments, mechanisms and models[J]. Carbon, 2001, 39(15): 2247-2268.
-
[14]
[11] TERESA B M, JACQUELINE M W, EMMA M F, JENNY M J, ALAN W. In situ study of soot from the combustion of a biomass pyrolysis intermediate-eugenol-and n-decane using aerosol time of flight mass spectrometry[J]. Energy Fuels, 2010, 24(1): 439-445.
-
[15]
[12] 付鹏. 生物质热解气化气相产物释放特性和焦结构演化行为研究[D]. 华中科技大学博士论文, 2010: 1-151.
-
[16]
(FU Peng. Study on gas release characteristics and char structural evolution duing pyrolysis and gasification of biomass[D]. Huazhong University of Science and Technology, 2010: 1-151.)
-
[17]
[13] DEMIRBAS A. An overview of biomass pyrolysis[J]. Energy Sources, 2002, 24(5): 471-482.
-
[18]
[14] KILZER R J, BROIDO A. Speculations on the nature of cellulose pyrolysis[J]. Pyrodynamics, 1965, 2: 151-163.
-
[19]
[15] ANTAL M J, FRIEDMAN H, ROGERS F E. Kinetic of cellulose pyrolysis in nitrogen and steam[J]. Combust Sci Technol, 1980, 21(3/4): 141-l52.
-
[20]
[16] 许洁, 颜涌捷, 李文志, 王君, 陈明强. 生物质裂解机理和模型(I)—生物质裂解机理和工艺模式[J]. 化学与生物工程, 2007, 24(12): 1-4.
-
[21]
(XU Jie, YAN Yong-jie, LI Wen-zhi, WANG Jun, CHEN Ming-qiang. Review of mechamism and model of bioss pyrolysis (I)-mechanism and technical patterns of biomass pyrolysis[J]. Chemistry and Bioengineering, 2007, 24(12): 1-4.)
-
[22]
[17] ONO H, YAMADA T. Cellulosic materials-potential source for adhesive[J]. Chem Adhesion, 2000, 74: 44-49.
-
[1]
-
-
-
[1]
Kuaibing Wang , Feifei Mao , Weihua Zhang , Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042
-
[2]
Zhibei Qu , Changxin Wang , Lei Li , Jiaze Li , Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039
-
[3]
Ying Zhang , Fang Ge , Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104
-
[4]
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
-
[5]
Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064
-
[6]
Meijin Li , Xirong Fu , Xue Zheng , Yuhan Liu , Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027
-
[7]
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
-
[8]
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
-
[9]
Lei Shu , Zimin Duan , Yushen Kang , Zijian Zhao , Hong Wang , Lihua Zhu , Hui Xiong , Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084
-
[10]
Houzhen Xiao , Mingyu Wang , Yong Liu , Bangsheng Lao , Lingbin Lu , Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011
-
[11]
Peng Zhan . Practice and Reflection in Training Medicinal Chemistry Graduate Students. University Chemistry, 2024, 39(6): 112-121. doi: 10.3866/PKU.DXHX202402022
-
[12]
Weigang Zhu , Yun Tian , Zhicheng Zhang , Hongling Gao . Reform Exploration of Student Performance Assessment in Inorganic Chemistry Experimental Courses. University Chemistry, 2024, 39(10): 203-209. doi: 10.12461/PKU.DXHX202404114
-
[13]
Lei Shu , Zhengqing Hao , Kai Yan , Hong Wang , Lihua Zhu , Fang Chen , Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134
-
[14]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
-
[15]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[16]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[17]
Wenli FENG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308
-
[18]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[19]
Xiaoxuan Yu , Wukun Liu . Practice of Ideological and Political Education in Medicinal Chemistry for Pharmacy Administration Major: A Case Study on the Discovery of Cisplatin’s Anticancer Function. University Chemistry, 2025, 40(4): 408-414. doi: 10.12461/PKU.DXHX202405200
-
[20]
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(853)
- HTML views(152)