Citation:
LIANG Hu-zhen, ZENG Fan-gui, XIANG Jian-hua, LI Mei-fen. Geochemical characteristics and inorganic-organic affinity of the trace elements in Yimin lignite[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(10): 1173-1183.
-
The occurrence characteristic and contents of 32 trace elements in 15# and 16# coals in Yimin were analyzed using ICP-MS combined with demineralization and extraction of humic acid. Compared with Clark values and contents of trace element in Jurassic-Cretaceous coal in China and lignite in the world, there were no obvious enrichment of the trace elements in Yimin raw coal. Contents of most trace elements, expect Ni and As, in demineralized coals are lower than those in the raw coal. Some trace elements, Ni, Mo, Cd, Sn, and W significantly enriched in humic acid extracted from raw coal and demineralized coal, which indicates that these elements form the stable organic-compounds with humic acid. Meanwhile V, Ni and As were found to be enriched in raw coal and demineralized coal,which showed that the stable organic-compounds could be formed between V, Ni,As and coal macromolecule. 6 kinds of trace elements in Yimin coal are classified based on correlation coefficient between ash and trace element: inorganic enriched elements-Cr and U; inorganic affinity element-Cu, Cd, In, Sn, Ga, Y, Zr, Hf, Bi and Th; the tendency of inorganic affinity element-Be, Sc, Rb, Sr, Nb, Cs, Ta and Pb; the tendency of organic affinity element-V, Cr, Co, Cu, Se, Y, Mo, Cd, Sn, Sb, Ta and Tl; the organic affinity element-Li, Co and W; the organic enriched elements-Ni, Zn, Mo and Sb.
-
Keywords:
- coal,
- humic acid,
- macromolecular,
- trace element,
- inorganic-organic affinity
-
-
-
[1]
[1] BARUAH M K, KOTOKY P, BORAH G C. Distribution and nature of organic/mineral bound elementsin Assam coals, India[J]. Fuel, 2003, 82(14): 1783-1791.
-
[2]
[2] 杨建业. 煤中微量元素的酸脱除率与元素周期律-以渭北晚古生代5号煤层为例[J]. 燃料化学学报, 2010, 38(5): 521-527.
-
[3]
(YANG Jian-ye. Acid removal rate of trace elements and its organic-inorganic affinity in coal[J]. Journal of Fuel Chemistry and Technology, 2010, 38(5): 521-527.)
-
[4]
[3] 张军营, 任德贻, 赵峰华, 许德伟. 煤中微量元素赋存状态研究方法[J]. 煤炭转化, 1998, 21(4): 12-17.
-
[5]
(ZHANG Jun-ying, REN De-yi, ZHAO Feng-hua, Xu De-wei. Researach methods of occurrences of trace elements in coal[J]. Coal Conversion, 1998, 21(4): 12-17.)
-
[6]
[4] SPEARS D A. The determination of trace element distributions in coals using sequential chemical leaching-A new approach to an old method[J]. Fuel, In press.
-
[7]
[5] WANG J, LI C, SAKANISHI K, NAKAZATOB T, TAOB H, TAKANOHASHI T, TAKARADAC T, SAITOA I. Investigation of the remaining major and trace elements in clean coal generated by organic solvent extraction[J]. Fuel, 2005, 84(12/13): 1487-1493.
-
[8]
[6] 赵峰华, 彭苏萍, 李大华, 唐跃刚, 任德贻, 许德伟. 低煤级煤中部分元素有机亲合性的定量研究[J]. 中国矿业大学学报, 2003, 32(1): 18-22.
-
[9]
(ZHAO Feng-hua, PENG Su-ping, LI Da-hua, TANG Yue-gang, REN De-yi, XU De-wei. Quantitative study of organic affinity of elements in low rank coals[J]. Journal of China University of Mining & Technology, 2003, 32(1): 18-22.)
-
[10]
[7] SWAINE D J. The organic association of elements in coal[J]. Organic Geochemistry, 1992, 18(3): 259-261.
-
[11]
[8] OPAPRAKASIT P, SCARONI A, PAINTER P C. Ionomer-like structure and π-cation interactions in Argonne premium coals[J]. Energy Fuels, 2002, 16(3): 543-551.
-
[12]
[9] WANG W, QIN Y, SANG S, ZHU Y, WANG C, WEISS D. Geochemistry of rare earth elements in a marine influenced coal and its organic solvent extracts from the Antaibao mining district, Shanxi, China[J]. Int J Coal Geology, 2008, 76(4): 309-317.
-
[13]
[10] GLUSKOTER H J, RUCH R R, MILLER W G, CAHILL R A, DREHER G B. Trace elements in coal: Occurrence and distribution[R]. United States, Illinois State Geological Survey Circular, 1977.
-
[14]
[11] 唐修义, 黄文辉. 中国煤中微量元素[M]. 北京: 商务出版社, 2004.
-
[15]
(Tang Xiu-yi, Huang Wen-hui. Trace elements in coal of China[M]. Beijing: The Commercial Press, 2004.)
-
[16]
[12] ESKENAZY G M, STEFANOVA Y S. Trace elements in the Goze Delchev coal deposit, Bulgaria[J]. Int J Coal Geology, 2007, 72(3/4): 257-267.
-
[17]
[13] QUEROL X, ALASTUEY A, LOPEZ-SOLER A, PLANA F, FERNANDEZ-TURIEL J L, ZENG R S, XU W D, ZHUANG X G, SPIRO B. Geological controls on the mineral matter and trace elements of coals from the Fuxin basin, Liaoning Province, northeast China[J]. Int J Coal Geology, 1997, 34(1/2): 89-109.
-
[18]
[14] KORTENSKI J, SOTIROV A. Trace and major element content and distribution in Neogene lignite from the Sofia Basin[J]. Int J Coal Geology, 2002, 52(1/4): 63-82.
-
[19]
[15] DAI S, REN D, TANG Y, YUE M, HAO L. Concentration and distribution of elements in late Permian coals from western Guizhou Province, China[J]. Sofia Basin, 2005, 61(1/2): 119-137.
-
[20]
[16] 代世峰, 任德贻, 唐跃刚. 煤中常量元素的赋存特征与研究意义[J]. 煤田地质与勘探, 2005, 33(2): 1-5.
-
[21]
(DAI Shi-feng, REN De-yi, TANG Yue-gang. Modes of occurrence of major elements in coal and their study significance[J]. Coal Geology & Exploration, 2005, 33(2): 1-5.)
-
[22]
[17] LARSEN J W, PAN C, SHAWVER S. Effect of demineralization on the macromolecular structure of coals[J]. Energy Fuels, 1989, 3(5): 557-561.
-
[23]
[18] YOSHINOBU O, PHILIP L, WALKER J. Pyrolysis of demineralized and metal cation loaded lignites[J]. Fuel, 1993, 72(2): 139-149.
-
[24]
[19] FINKELMAN R, PALMER C A, KRASNOW M R, ARUSCAVAGE P J, SELLERS G A, DULONG F T. Combustion and leaching behavior of elements in the Argonne Premium coal samples[J]. Energy Fuels, 1990, 4(6): 755-766.
-
[25]
[20] MERCIER F, MOULIN V, BARR N, CASANOVA F, TOULHOAT P. Study of the repartition of metallic trace elements in humic acids colloids: Potentialities of nuclear microprobe and complementary techniques[J]. Analytica Chimica Acta, 2001, 427(1): 101-110.
-
[26]
[21] DONALD S M, BISHOP A G, PRENZLER P D, ROBARDS K. Analytical chemistry of freshwater humic substances[J]. Analytica Chimica Acta, 2004, 527(2): 105-124.
-
[1]
-
-
-
[1]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[2]
Zhenhua Wang , Haoyang Feng , Xiaoyang Shao , Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007
-
[3]
Yukun Chang , Haoqin Huang , Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095
-
[4]
Hong CAI , Jiewen WU , Jingyun LI , Lixian CHEN , Siqi XIAO , Dan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382
-
[5]
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036
-
[6]
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
-
[7]
Yonghui Wang , Weilin Chen , Yangguang Li . Knowledge Construction of “Solubility of Inorganic Substances” in Elemental Chemistry Teaching. University Chemistry, 2024, 39(4): 261-267. doi: 10.3866/PKU.DXHX202312102
-
[8]
Yuan Zheng , Quan Lan , Zhenggen Zha , Lingling Li , Jun Jiang , Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065
-
[9]
Jingjing QING , Fan HE , Zhihui LIU , Shuaipeng HOU , Ya LIU , Yifan JIANG , Mengting TAN , Lifang HE , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003
-
[10]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[11]
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
-
[12]
Yaofeng Yuan , Keyin Ye , Chunfa Xu , Hong Yan , Yuanming Li . Fostering an International Perspective in Postgraduate Student Teaching: A Case Study of the Organic Structure Analysis Course. University Chemistry, 2024, 39(6): 145-150. doi: 10.3866/PKU.DXHX202402024
-
[13]
Yi DING , Peiyu LIAO , Jianhua JIA , Mingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393
-
[14]
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
-
[15]
Keying Qu , Jie Li , Ziqiu Lai , Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091
-
[16]
Wenliang Wang , Weina Wang , Sufan Wang , Tian Sheng , Tao Zhou , Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084
-
[17]
Yuan Chun , Yongmei Liu , Fuping Tian , Hong Yuan , Shu'e Song , Wanchun Zhu , Yunchao Li , Zhongyun Wu , Xiaokui Wang , Yunshan Bai , Li Wang , Jianrong Zhang , Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053
-
[18]
Ruiying WANG , Hui WANG , Fenglan CHAI , Zhinan ZUO , Benlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052
-
[19]
Huan Zhang , Linyu Pu , Wei Wang , Yatang Dai , Xu Huang . Curriculum Development and Blended Teaching Practice in the Graduate Course on Elemental Inorganic Chemistry. University Chemistry, 2024, 39(6): 166-173. doi: 10.3866/PKU.DXHX202402010
-
[20]
Qianlang Wang , Jijun Sun , Qian Chen , Quanqin Zhao , Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(512)
- HTML views(13)