Citation: WANG Xi-ming, WANG Xing-jun, CHEN Fan-min, LIU Hai-feng, YU Guang-suo, WANG Fu-chen. Catalytic gasification kinetics of coal with steam at mid-temperature[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(10): 1166-1172. shu

Catalytic gasification kinetics of coal with steam at mid-temperature

  • Corresponding author: WANG Xing-jun, 
  • Received Date: 25 March 2013
    Available Online: 2 May 2013

    Fund Project: 国家重点基础研究发展规划(973计划, 2010CB227000)。 (973计划, 2010CB227000)

  • The steam gasification kinetics of four different metamorphosed coals at mid-temperature (700~850℃) using potassium carbonate as catalyst was investigated with the isothermal thermogravimetric analysis under ambient pressure. The results show that the catalysis is greater for the high metamorphosed coal gasification. The integrated model and modified random pore model are good to correlate the relationships between carbon conversion and time for the case with potassium carbonate catalyst. However, the volumetric reaction model is poor in the fitting of data. The activity energy and pre-exponential factor were predicted from the modified random pore model. The activity energy of coal char catalytic gasification ranges from 90.317~167.861 kJ/mol. And there are compensation effects between reaction activity energy and pre-exponential factor.
  • 加载中
    1. [1]

      [1] 唐宏青. 现代煤化工新技术[M]. 北京: 化学工业出版社, 2009.

    2. [2]

      (TANG Hong-qing. New technologies of modern coal chemical industry[M]. Beijing: Chemical Industry Press, 2009.)

    3. [3]

      [2] 许慎启, 周志杰, 杨帆, 于广锁, 于遵宏. 神府煤焦与CO2的气化反应动力学分析[J]. 中国电机工程学报, 2009, 29(2): 41-46.

    4. [4]

      (XU Shen-qi, ZHOU Zhi-jie, YANG Fan, YU Guang-suo, YU Zun-hong. Analysis on gasification reaction kinetics of Shenfu char gasified by CO2[J]. Proceedings of the CSEE, 2009, 29(2): 41-46.)

    5. [5]

      [3] ZHANG Y, HARA S, KAJITANI S, ASHIZAWA M. Modeling of catalytic gasification kinetics of coal char and carbon[J]. Fuel, 2010, 89(1): 152-157.

    6. [6]

      [4] 张泽凯, 王黎, 刘业奎, 冯霄. 氯化钾催化气化煤的等温动力学研究[J]. 西安交通大学学报, 2003, 37(9): 954-961.

    7. [7]

      (ZHANG Ze-kai, WANG Li, LIU Ye-kui, FENG Xiao. Catalytic gasification kinetics of coal by KCl with carbon dioxide[J]. Journal of Xi'an Jiaotong University, 2003, 37(9): 954-961.)

    8. [8]

      [5] 林驹, 张济宇, 钟雪晴. 纸浆黑液对福建无烟煤水蒸气催化气化的动力学和补偿效应[J]. 化工学报, 2009, 60(4): 905-911.

    9. [9]

      (LIN Ju, ZHANG Ji-yu, ZHONG Xue-qing. Kinetics and compensation effects of steam gasification of Fujian anthracite using black liquor as catalyst[J]. Journal of Chemical Industry and Engineering, 2009, 60(4): 905-911.)

    10. [10]

      [6] 战书鹏, 王兴军, 洪冰清, 于广锁, 王辅臣. 褐煤催化加氢气化实验[J]. 燃料化学学报, 2012, 40(1): 8-14.

    11. [11]

      (ZHAN Shu-peng, WANG Xing-jun, HONG Bing-qing, YU Guang-suo, WANG Fu-chen. Experimental study on catalytic hydrogasification of lignite[J]. Journal of Fuel Chemistry and Technology, 2012, 40(1): 8-14.)

    12. [12]

      [7] DENNIS J S, SCOTT S A, HAYHURST A N. In situ gasification of coal using steam with chemical looping: A technique for isolating CO2 from burning a solid fuel[J]. J Energy Inst, 2006, 79(3): 187-190.

    13. [13]

      [8] 林荣英, 张济宇. 高变质程度无烟煤热天平水蒸气催化气化动力学碳酸钠催化剂[J]. 化工学报, 2006, 57(10): 2309-2318.

    14. [14]

      (LIN Rong-ying, ZHANG Ji-yu. Catalytic gasification kinetics of high metamorphosed anthracites by steam in thermogravity (I) With sodium carbonate as catalyst[J]. Journal of Chemical Industry and Engineering, 2006, 57(10): 2309-2318.)

    15. [15]

      [9] HAO L, CHUNHUA L, MASAHIRO K, SHIGERU K, TOSHINORI K. Unification of gasification kinetics of char in CO2 at elevated temperatures with a modified random pore model[J]. Energy Fuels, 2003, 17(4): 961-970.

    16. [16]

      [10] 李淑芬, 陈彦伶. 五台型煤焦CO2催化气化的补偿效应[J]. 天津大学学报, 1996, 29(2): 259-264.

    17. [17]

      (LI Shu-fen, CHEN Yan-ling. The compensation effect of Wu tai shaped char CO2 catalytic gasification[J]. Journal of Tianjin University, 1996, 29(2): 259-264.)

    18. [18]

      [11] 林荣英, 张济宇. 低活性无烟煤二氧化碳催化气化动力学-热天平等温热重法[J]. 化工学报, 2005, 56(12): 2332-2341.

    19. [19]

      (LIN Rong-ying, ZHANG Ji-yu. Catalytic gasification kinetics of low activity anthracites with carbon dioxide-Isothermal thermogravimetric analysis[J]. Journal of Chemical Industry and Engineering, 2005, 56(12): 2332-2341.)

    20. [20]

      [12] 谢克昌. 煤结构与反应性[M]. 北京: 科学出版社, 2002: 290-291.

    21. [21]

      (XIE Ke-chang. Coal structure and its reactivity[M]. Beijing: Science Press, 2002: 290-291.)

    22. [22]

      [13] 张济宇. 福建无烟粉煤催化气化的工业化前景[J]. 煤炭转化, 1999, 22(2): 28-32.

    23. [23]

      (ZHANG Ji-yu. Industrialized prospect for the catalytic gasification of Fujian pulverized anthracite[J]. Coal Conversion, 1999, 22(2): 28-32.)

    24. [24]

      [14] 张济宇, 林驹, 黄文沂, 朱跃资, 林建. 福建无烟粉煤催化气化[J]. 燃料化学学报, 1999, 27(3): 238-245.

    25. [25]

      (ZHANG Ji-yu, LIN Ju, HUANG Wen-ji, ZHU Yue-zi, LIN Jian. Catalytic gasification of pulverized Fujian anthracite in fludized beds[J]. Journal of Fuel Chemistry and Technology, 1999, 27(3): 238-245.)

    26. [26]

      [15] 林驹, 张济宇, 曾才, 朱跃资. 福建无烟粉煤流化床混合气催化气化表观动力学的研究[J]. 燃料化学学报, 2000, 28(6): 485-491.

    27. [27]

      (LIN Ju, ZHANG Ji-yu, ZENG Cai, ZHU Yue-zi. Apparent kinetics of catalytic gasification on pulverized Fujian anthracite with mixing gas in fludized beds[J]. Journal of Fuel Chemistry and Technology, 2000, 28(6): 485-491.)

    28. [28]

      [16] 刘鑫. 热处理及金属活化对石油焦气化过程的影响研究[D]. 上海: 华东理工大学, 2012.

    29. [29]

      (LIU Xin. The research of the influence of pyrolysis and metal on petroleum coke gasification reactivity[D]. Shanghai: East China University of Science and Technology, 2012.)

  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    3. [3]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    4. [4]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    5. [5]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    6. [6]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    7. [7]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    8. [8]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    9. [9]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    10. [10]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    11. [11]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    12. [12]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    13. [13]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    14. [14]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    15. [15]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    16. [16]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    17. [17]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    18. [18]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    19. [19]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    20. [20]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

Metrics
  • PDF Downloads(0)
  • Abstract views(660)
  • HTML views(91)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return