Citation: LI Guo-na, LI Chun-ying, WANG Wei-na, SHEN Wen, LÜ Jian, WANG Wen-liang. Theoretical study on the mechanism, heat sink and product distribution for thermal decomposition of endothermic hydrocarbon fuel n-decane[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(9): 1136-1145. shu

Theoretical study on the mechanism, heat sink and product distribution for thermal decomposition of endothermic hydrocarbon fuel n-decane

  • Corresponding author: WANG Wen-liang, 
  • Received Date: 19 February 2013
    Available Online: 4 May 2013

    Fund Project: 国家自然科学基金(21173139)。 (21173139)

  • The geometry optimizations and vibrational frequencies of reactions, products and transition states involved in pyrolysis of n-decane were performed using the hybrid method B3LYP with 6-311G (d,p) basis set based on density functional theory. The potential energy surfaces of n-decane were built by the B3LYP/aug-cc-pVTZ methods. The rate constants of all reactions with Eckart correction were calculated by the TheRate program package. The heat capacity and entropy (Cp,mθ and S298 Kθ) at different temperatures were obtained by statistic thermodynamics. In order to calculate the standard formation enthalpy (△fH298 Kθ) for all species, isodesmic reactions were designed. The Chemkin II program was used to model the product distribution and heat sink. The effects of the temperature and pressure on the heat sink and product distribution were discussed. The results show that the C-C bond breaking process is the initial step of all reactions and H-abstraction reaction is easier to proceed than the β-scission reaction. The cracking initial temperature is 500 ℃ and the reactions mainly occur in the range of 600~700 ℃. The major products are hydrogen, methane, ethylene, ethane, propylene and 1,3-butadiene and the product distributions vary with temperatures. The total heat sink of n-decane is 2.334 MJ/kg at 600 ℃ and 2.5 MPa, with the conversions of 25.9%, which could meet the cooling requirement of aircrafts at 5~6 Mach number.
  • 加载中
    1. [1]

      [1] 李春迎, 李凤仙, 杜咏梅, 吕剑. 吸热型碳氢燃料五环[6.3.1.02,7.03,5.09,11]十二烷的催化合成[J]. 燃料化学学报, 2007, 35(5): 637-640. (LI Chun-ying, LI Feng-xian, Du Yong-mei, LU Jian. Synthesis of endothermic hydrocarbon fuel pentacyclo[6.3.1.02,7.03,5.09,11] dodecane[J]. Journal of Fuel Chemistry and Technology, 2007, 35(5): 637-640.)

    2. [2]

      [2] 孙青梅, 米镇涛, 张香文. 吸热型碳氢燃料RP-3仿JP-7临界性质(tcpc)的测定[J]. 燃料化学学报, 2006, 34(4): 466-470. (SUN Qing-mei, MI Zhen-tao, ZHANG Xiang-wen. Determination of critical properties (tc, pc) of endothermic hydrocarbon fuels RP-3 and simulated JP-7[J]. Journal of Fuel Chemistry and Technology, 2006, 34(4): 466-470.)

    3. [3]

      [3] HERBINET O, MARQUAIRE P M, FREDERIQUE B L, FOURNET R. Thermal decomposition of n-dodecane: Experiments and kinetic modeling[J]. J Anal App Pyrolysis, 2007, 78(2): 419-429.

    4. [4]

      [4] ZAMOSTNY P, BELOHLAV Z, STARKBAUMOVA L, PATERA J. Experimental study of hydrocarbon structure effects on the composition of its pyrolysis products[J]. J Anal Appl Pyrolysis, 2010, 87(2): 207-216.

    5. [5]

      [5] YU J, ESER S. Thermal decomposition of C10-C14 normal alkanes in near-critical and supercritical regions: Product distributions and reaction mechanisms[J]. Ind Eng Chem Res,1997, 36(3): 574-584.

    6. [6]

      [6] 焦毅, 李军, 王静波, 王健礼, 朱权, 陈耀强, 李象远. 正癸烷热裂解实验和动力学模拟[J]. 物理化学学报, 2011, 27(5): 1061-1067. (JIAO Yi, LI Jun, WANG Jing-bo, WANG Jian-li, ZHU Quan, CHEN Yao-qiang, LI Xiang-yuan. Experiment and kinetics simulation on the pyrolysis of n-decane[J]. Acta Phys Chim Sin, 2011, 27(5): 1061-1067.)

    7. [7]

      [7] ZEPPIERI S P, KLOTZ S D, DRYER F L. Modeling concepts for larger carbon mumber alkanes: A partially reduced skeletal mechanism for n-decane oxidation and pyrolysis[J]. Proc Combust Inst, 2000, 28(2): 1587-1595.

    8. [8]

      [8] FRISCH M J, TRUCKS G W. Gaussiah 03[CP]. Gaussion, Inc., Wallingford CT, 2004.

    9. [9]

      [9] DUNCAN W T, BELL R L, TRUONG T N. The rate: Program for ab initio direct dynamics calculations of thermal and vibrational-state-selected rate constants[J]. J Comput Chem, 1998, 19(9): 1039-1052.

    10. [10]

      [10] MANION J A, HUIE R E, LEVIN R D, BURGESS Jr, ORKIN V L, TSANG W, MCGIVERN W S, HUDEGENS J W, KNYAZEV V D, ATKINSON D B, CHAI E, TREREZA A M, LIN C-Y, ALLISON T C, MALLARD W G, WESTLEY F, HERRON J T, HAMPSON R F, FRIZZELL D H. Chemical Kinetics Database, NIST Standard Reference Database 17 (Web Version), Release 1. 4. 2, data version 08. 09[2]. National Institute of Standards and Technology, Gaithersburg, Maryland, 20899-8380.

    11. [11]

      [11] COHEN N. Revised group additivity values for enthalpies of formation(at 298 K) of carbon-hydrogen and carbon-hydrogen-oxygen compounds[J]. J Phys Chem Ref Data, 1996, 25(6): 1411-1481.

    12. [12]

      [12] 袁涛. 正庚烷、异辛烷热解和预混火焰的实验及动力学模型研究[D]. 合肥:中国科学技术大学, 2010. (YUAN Tao. Experimental and kinetic modeling studies on pyrolysis and premixed flames of n-hptane and iso-octane[D]. Hefei: University of Science and Technology of China, 2010.)

    13. [13]

      [13] CURRAN H J. Rate constant estimation for C1 to C4 alkyl and alkoxyl radical decomposition[J]. Int J Chem Kinet, 2006, 38(4): 250-275.

    14. [14]

      [14] FENG Y, NIIRANEN J T, BENCSURA A, KNYAZEV V D, GUTMAN D, TSANG W. Weak collision effects in the reaction C2H5→C2H4+H[J]. J Phys Chem, 1993, 97(4): 871-880.

    15. [15]

      [15] BENCSURA A, KNYAZEV V D, XING S B, SLAGLE I R, GUTMAN D. Kinetics of the thermal decomposition of the n-propyl radical[J]. Symp Int Combust Proc,1992, 24: 629-635.

    16. [16]

      [16] KNYAZEV V D, SLAGLE I R. Unimolecular decomposition of n-C4H9 and iso-C4H9 radicals[J]. J Phys Chem, 1996, 100(13): 5318-5328.

    17. [17]

      [17] KEE R J, RUPLEY F M, MILLER J A, COLTRIN M E, GRCAR J F, MEEKS E, MOFFAT H K, LUTZ A E, DIXON-LEWIS G, SMOOKE M D, WARNATZ J, EVANS G H, LARSON R S, MITCHELL R E, PETZOLD L R, REYNOLDS W C, CARACOTSIOS M, STEWART W E, GLARBORG P, WANG C, ADIGUN O, HOUF W G, CHOU C P, MILLER S F. 2002 PaSR Application user manual: Modeling the mixing and kinetics in partially stirred reactors[Z]. Chemkin Collection Release 3.7, Reaction Design, Inc., San Diego, CA, 2002.

    18. [18]

      [18] 贾贞健. 吸热型碳氢燃料正癸烷高温裂解机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2011. (JIA Zhen-jian. Pyrolysis mechanism study of endothermic hydrocarbon fuel n-decane at high temperature[D]. Harbin: Harbin Institute of Techonlogy, 2011.)

    19. [19]

      [19] 刑燕, 方文军, 谢文杰, 郭永胜, 林瑞森. 吸热型碳氢燃料模型化合物在超临界条件下的裂解及热沉测定[J]. 化学学报, 2008, 66(20): 2243-2247. (XING Yan, FANG Wen-jun, XIE Wen-jie, GUO Yong-sheng, LIN Rui-sen. Thermal cracking and heat sink measurement of model compounds of endothermic hydrocarbon fuels under supercritical conditions[J]. Acta Chimica Sinica, 2008, 66(20): 2243-2247.)

    20. [20]

      [20] 朱丹阳. 吸热型碳氢燃料热沉的测定及影响因素[D]. 天津: 天津大学, 2004. (ZHU Dan-yang. Measuring of heat sink of endothermic hydrocarbon fuels and some factors[D]. Tianjin: Tianjin University, 2004.)

  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    3. [3]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    6. [6]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    7. [7]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    8. [8]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    9. [9]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    10. [10]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    11. [11]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    12. [12]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    13. [13]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    14. [14]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    15. [15]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    16. [16]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084

    17. [17]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    18. [18]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    19. [19]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    20. [20]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

Metrics
  • PDF Downloads(0)
  • Abstract views(609)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return