Citation: SU Ya-xin, DENG Wen-yi, SU A-long. NO reduction by methane over iron oxides and the mechanism[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(9): 1129-1135. shu

NO reduction by methane over iron oxides and the mechanism

  • Corresponding author: SU Ya-xin, 
  • Received Date: 31 December 2012
    Available Online: 28 February 2013

    Fund Project: 国家自然科学基金(51278095) (51278095)上海市自然科学基金(11ZR1401000)。 (11ZR1401000)

  • NO reduction by methane over iron oxides( fully oxidized iron mesh roll)was experimentally investigated in an one-dimensional electrically heated temperature programmed ceramic tubular reactor at 300~1 050 ℃ in N2 atmosphere. The NO reduction efficiency, CO formation, the components variation and microstructures of the iron sample after reaction were measured. The reaction mechanism of NO reduction by methane over iron oxides was proposed. A durable NO reduction by methane over iron oxides in simulated flue gas was conducted at 1 000 ℃. Results showed that methane was very effective to reduce NO over iron oxides. In N2 atmosphere, 100% NO reduction efficiency was achieved when temperature was above 850 ℃. In simulated flue gas, very good durable performance was demonstrated. 1.17% vol. methane could reduce 100% NO over 100 h at 1 000 ℃ in simulated flue gas which contained 2.0% O2, 16.8% CO2 and 524×10-6 NO in N2 base. Research results on the mechanism showed that NO was reduced with methane via two major routes: one is by reburning while the other is methane reduced iron oxides to metallic iron through redox reactions and then NO was reduced by metallic iron. The latter mechanism was believed to play the major role of NO reduction.
  • 加载中
    1. [1]

      [1] PARVULESCU V I, GRANGE P, DELMON B. Catalytic removal of NO[J]. Catal Today, 1998, 46(4): 233-316.

    2. [2]

      [2] JANSSEN F, MEIJER R. Quality control of DeNOx catalysts performance testing, surface analysis and characterization of DeNOx catalysts[J]. Catal Today, 1993, 16(2): 157-185.

    3. [3]

      [3] CENTI G, PERATHONER S. Introduction: State of the art in the development of catalytic processes for the selective catalytic reduction of NOx into N2[J]. Stud Surf Sci Catal, 2007, 171: 1-24.

    4. [4]

      [4] IWAMOTO M. Zeolites in environmental catalysis[J]. Stud Surf Sci Catal, 1994, 84: 1395-1410.

    5. [5]

      [5] TABATA T, KOKITSU M, OKADA O. Study on patent literature of catalysts for a new NOx removal process[J]. Catal Today, 1994, 22(1): 147-169.

    6. [6]

      [6] FENG X B, HALL W. KEI T H. FeZSM-5: A durable SCR catalyst for NOx removal from combustion streams[J]. J Catal, 1997, 166(2): 368-376.

    7. [7]

      [7] APOSTOLESCU N, GEIGER B, HIZBULLAH K, JAN M T, KURETI S, REICHERT D, SCHOTT F, WEISWEILER W. Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts[J]. Appl Catal B: Environ, 2006, 62(1/2): 104-114.

    8. [8]

      [8] KRISHNA K, SEIJGER G B F, van DEN BLEEK C M, MAKKEE M, MUL G, CALIS H P A. Selective catalytic reduction of NO with NH3 over Fe-ZSM-5 catalysts prepared by sublimation of FeCl3 at different temperatures[J]. Catal Lett, 2003, 86(1/3): 121-132.

    9. [9]

      [9] LI Y, BATTAVIO P B, ARMOR J N. Effect of water-vapor on the selective reduction of NO by methane over cobalt-exchanged ZSM-5[J]. J Catal, 1993, 142(2): 561-571.

    10. [10]

      [10] LI Y, ARMOR J N. Selective catalytic reduction of NOx with methane over metal exchanged zeolites[J]. Appl Catal B: Environ, 1993, 2(2/3): 239-256.

    11. [11]

      [11] CHOI B C, FOSTER D E. State-of-the-art of de-NOx technology using zeolite catalysts in automobile engines[J]. J Ind Eng Chem, 2005, 1(1): 1-9.

    12. [12]

      [12] BETHKE KA, KUNG M C, YANG B, SHAH M, ALT D, LI C, KUNG H H. Metal oxide catalysts for lean NOx reduction[J]. Catal Today, 1995, 26(2): 169-183.

    13. [13]

      [13] BETHKE K A, ALT D, KUNG M C. NO reduction by hydrocarbons in an oxidizing atmosphere over transition metal-zirconium mixed oxides[J]. Catal Lett, 1994, 25(1/2): 37-48.

    14. [14]

      [14] ILIOPOULOU E F, EVDOU A P, LEMONIDOU A A, VASALOS I A. Ag/alumina catalysts for the selective catalytic reduction of NOx using various reductants[J]. Appl Catal A: Gen, 2004, 274(1/2): 179-189.

    15. [15]

      [15] KOTSIFA A, KONDARIDES DI, VERYKIOS XE. A comparative study of the selective catalytic reduction of NO by propylene over supported Pt and Rh catalysts[J]. Appl Catal B: Environ, 2008, 80(3/4): 260-270.

    16. [16]

      [16] LIU Z, WANG K, ZHANG X, WANG J, CAO H, GONG M, CHEN Y. Study on methane selective catalytic reduction of NO on Pt/Ce0.67Zr0.33O2 and its application[J]. J Nat Gas Chem, 2009, 18(1): 66-70.

    17. [17]

      [17] 苏亚欣, 苏阿龙, 成豪。 金属铁直接催化还原NO的实验研究[J]. 煤炭学报, 2013, 38(s1): 206-210. (SU Ya-xin, SU A-long, CHENG Hao. Experimental study on direct catalytic reduction of NO by metallic iron[J]. Journal of China Coal Society, 2013, 38(s1): 206-210.)

    18. [18]

      [18] 李然家, 沈师孔. 晶格氧用于甲烷氧化制合成气的研究-氧化铁的氧化还原性能[J]. 分子催化, 2001, 3(15): 181-186. (LI Ran-jia, SHENG Shi-kong. Study on lattice oxygen used in the conversion of methane to synthesis gas - redox performance of Fe2O3 Catalyst[J]. Journal of Molecular Catalysis (China), 2001, 3(15):181-186.)

    19. [19]

      [19] TAKENAKA S, HANAIZUMI N, OTSUKA K, OTSUKA, K. Production of pure hydrogen from methane mediated by the redox of Ni- and Cr- added iron oxides[J]. J Catal, 2004, 228(2): 405-416.

    20. [20]

      [20] NAKAYAMA O, IKENAGA N, MIYAKE T, YAGASAKI E, SUZUKI T. Production of synthesis gas from methane using lattice oxygen of NiO-Cr2O3-MgO complex oxide[J]. Ind Eng Chem Res, 2010, 49(2): 526-534.

    21. [21]

      [21] TAMAURA Y, WADA Y, YOSHIDA T, TSUJI M. The coal/Fe3O4 system for mixing of solar and fossil energies[J]. Energy, 1997, 22(2/3): 337-342.

    22. [22]

      [22] 陈庚. 气基还原氧化铁动力学机理研究[D]. 大连: 大连理工大学, 2011. (CHENG Geng. The kinetics of the gas-based reduction of iron oxide[D]. Dalian: Dalian University of Technology, 2011.)

    23. [23]

      [23] 王华, 魏永刚. 晶格氧部分氧化甲烷制取合成气技术[M]. 北京: 冶金工业出版社, 2009. (WANG Hua, WEI Yong-gang. Partial oxidation of methane by lattice oxygen to produce synthesis gas[M]. Beijing: Metallurgical Industry Press, 2009.)

    24. [24]

      [24] MILLER J A, BOWMAN C T. Mechanism and modeling of nitrogen chemistry in combustion[J]. Prog Energ Combus Sci, 1989, 15(4): 287-337.

    25. [25]

      [25] 苏亚欣, GATHITU B B, WEI-YIN CHEN. Fe2O3控制再燃脱硝中间产物HCN的实验研究[J]. 环境科学学报, 2011, 31(6): 1181-1186. (SU Ya-xin, GATHITU, BENSON B, CHEN, WEI-YIN CHEN. Experimental examination of HCN compound control by Fe2O3 during reburning processes[J]. Journal of Enironmental Sciences, 2011, 31(6): 1181-1186.)

    26. [26]

      [26] IVANOV V, NAGY J B, LAMBIN P, LUCAS A, ZHANG X B, ZHANG X F, BERNAERTS D, VANTENDELOO G, AMELINCKX S, VANLANDUYT J. The study of carbon nanotubes produced by catalytic method[J]. Chem Phys Lett, 1994, 223(4): 329-335.

    27. [27]

      [27] FLAHAUST E, GOVINDARAJ A, PEIGNEY A, LAURENT C, ROUSSET A, RAO CNR. Synthesis of single-walled carbon nanotubes using binary (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid solutions[J]. Chem Phys Lett, 1999, 300(1/2): 236-242.

    28. [28]

      [28] SMOOT L D, HILL S C, XU H. NOx control through reburning[J]. Prog Energy Combus Sci, 1998, 24(5): 385-408.

    29. [29]

      [29] TAN H Z, WANG X B, NIU Y Q, LIU H Y, WANG C L, XU T M. Studies of intereaction mechanism between iron and HCN[J]. Asian J Chem, 2010, 22(5): 4017-4025.

    30. [30]

      [30] ZENKOV V I, PASICHNYI V V. Reduction kinetics of iron oxides used for hydrogen production in various gas media[J]. Powder Metal Met Ceram, 2010, 49(3/4): 213-237.

    31. [31]

      [31] ZENKOV V I, PASICHNYI V V, REDKO V P. Reduction of iron-containing metallurgical waste to obtain hydrogen with iron vapor method[J]. Powder Metal Met Ceram, 2008, 47(11/12): 733-742.

    32. [32]

      [32] GRADON B, LASEK J. Investigation of reduction of NO to N2 by reaction with Fe[J]. Fuel, 2010, 89(11): 3505-3509.

    33. [33]

      [33] SU Y X, SU A L, CHENG H. Experimental study of NO reduction by iron in CO atmosphere[J]. Adv Mater Res, 2012, 518-523: 2138-2142.

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    3. [3]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    4. [4]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    5. [5]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    6. [6]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    7. [7]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    8. [8]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    9. [9]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    10. [10]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    11. [11]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    12. [12]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    13. [13]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    14. [14]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    15. [15]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    16. [16]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    17. [17]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    18. [18]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    19. [19]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    20. [20]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

Metrics
  • PDF Downloads(0)
  • Abstract views(674)
  • HTML views(161)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return