Citation: XU Bing-qing, ZHANG Xiao-qing, LONG Hua-li, SHANG Shu-yong, YIN Yong-xiang. Hydrogen making from steam-carbon reaction catalyzed by K2CO3 with light irradiation heating[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(9): 1102-1107. shu

Hydrogen making from steam-carbon reaction catalyzed by K2CO3 with light irradiation heating

  • Corresponding author: SHANG Shu-yong,  YIN Yong-xiang, 
  • Received Date: 15 January 2013
    Available Online: 4 March 2013

    Fund Project: 国家自然科学基金(11075113)。 (11075113)

  • With the simulated solar reaction system irradiated by Xenon lamp, an experiment of hydrogen making from steam-carbon reaction catalyzed by K2CO3 was carried out at about 700 ℃. It is found that the rate of hydrogen production with catalysts is 10 times more than that without catalysts, and there is no obvious difference in the rate of hydrogen production with the catalyst content from 10% to 20%. The oxygen-transfer mechanism for hydrogen making from steam-carbon reaction catalyzed by K2CO3 was discussed in detail, which was used to explain the unbalanced phenomenon of hydrogen and oxygen in reaction product. The efficiency of light energy conversion to chemical energy reaches to 13.12% in the experiment, which is better than that of photovoltaic method(10.85%). Some approaches for improving the energy conversion efficiency were proposed.
  • 加载中
    1. [1]

      [1] STEINFELD A, WEIMER A W. Thermochemical production of fuels with concentrated solar energy[J]. Opt Express, 2010, 18(S1): A100-A111.

    2. [2]

      [2] ROMERO MANUEL, STEINFELD ALDO. Concentrating solar thermal power and thermochemical fuels[J]. Energy Environ Sci, 2012, 5(11): 9234-9245.

    3. [3]

      [3] SMESTAD G P, STEINFELD A. Review: Photochemical and thermochemical production of solar fuels from H2O and CO2 using metal oxide catalysts[J]. Ind Eng Chem Res, 2012, 51(37): 11828-11840.

    4. [4]

      [4] 王宝辉, 吴红军, 刘淑芝, 盖翠萍. 太阳能分解水制氢技术研究进展[J]. 化工进展, 2006, 25(7): 733-738. (WANG Bao-hui, WU Hong-jun, LIU Shu-zhi, GAI Cui-ping. Advance on research of hydrogen production by solar water splitting[J]. Chemical Industry and Engineering Progress, 2006, 25(7): 733-738.)

    5. [5]

      [5] TRIBUTSCH H. Photovoltaic hydrogen generation[J]. Int J Hydrogen Energy, 2008, 33(21): 5911-5930.

    6. [6]

      [6] XIAO L, WU S Y, LI Y R. Advances in solar hydrogen production via two-step water-splitting thermochemical cycles based on metal redox reactions[J]. Renewable Energy, 2012, 41: 1-12.

    7. [7]

      [7] STAMATIOU A, LOUTZENHISER P G, STEINFELD A. Solar syngas production via H2O/CO2-splitting thermochemical cycles with Zn/ZnO and FeO/Fe3O4 redox reactions[J]. Chem Mater, 2010, 22(3): 851-859.

    8. [8]

      [8] 祝星, 王华, 魏永刚, 李孔斋, 晏冬霞. 金属氧化物两步法化学循环分解水制氢化学进[J]. 2010, 22(5): 1010-1020. (ZHU Xing, WANG Hua, WEI Yong-gang, LI Kong-zhai, YAN Dong-xia. Hydrogen production by two-step water-splitting thermochemical cycle based on metal oxide redox System[J]. Progress in Chemistry, 2010, 22(5): 1010-1020.)

    9. [9]

      [9] NOBUYUKI G, TETSURO M, NOBUYUKI K, TATSUYA K. Thermochemical two-step water splitting by internally circulating fluidized bed of NiFe2O4 particles: Successive reaction of thermal-reduction and water-decomposition steps[J]. Int J Hydrogen Energy, 2011, 36(8): 4757-4767.

    10. [10]

      [10] WORNER A, TAMME R. CO2 reforming of methane in a solar driven volumetric receiver-reactor[J]. Catal Today, 1998, 46(2): 165-174.

    11. [11]

      [11] BUCK R, MUIR J F, HOGAN RE.Carbon dioxide reforming of methane in a solar volumetric receiver/reactor: The CAESAR project[J]. Sol Energy Mater, 1991, 24(1): 449-463.

    12. [12]

      [12] MUIR J, HOGAN R, SKOCYPEC R, BUCK R. Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish: I-Test and analysis[J]. Solar Energy, 1994, 52(6): 467-477.

    13. [13]

      [13] KODAMA T, KIYAMA A. Solar methane reforming using a new type of catalytically-activated metallic foam absorber[J]. J Sol Energy Eng, 2004, 126(2): 808-811.

    14. [14]

      [14] BERMAN A, KARN R K, EPSTEIN M. A new catalyst system for high-temperature solar reforming of methane[J]. Energy Fuels, 2006, 20(2): 455-462.

    15. [15]

      [15] WANG J, SAKANISHI K, SAITO I. High-yield hydrogen production by steam gasification of hypercoal (ash-free coal extract) with potassium carbonate:Comparison with raw coal[J]. Energy Fuels, 2005, 19(5): 2114-2120.

    16. [16]

      [16] 金会心, 王华. 聚光太阳能加热昭通褐煤的气化试验研究[J]. 燃料化学学报, 2001, 29(6): 548-551. (JIN Hui-xin, WANG Hua. Gasification of Zhao tong Lignite Heated by Concentrated Solar Energy[J]. Journal of Fuel Chemistry and Technology, 2001, 29(6): 548-551.)

    17. [17]

      [17] WANG J, JIANG M Q, YAO Y H, ZHANG Y M, CAO J Q. Steam gasification of coal char catalyzed by K2CO3 for enhanced production of hydrogen with out formation of methane[J]. Fuel, 2009, 88(9): 1572-1579.

    18. [18]

      [18] MOULIJN J A, KAPTEIJN F. Towards a unified theory of reactions of carbon with oxygen-containing molecules[J]. Carbon, 1995, 33(8): 1155-1165.

    19. [19]

      [19] 孙雪莲, 王黎, 张占涛. 煤气化复合催化剂研究及机理探讨[J]. 煤炭转化, 2006, 29(1): 15-18. (SUN Xue-lian, WANG Li, ZHANG Zhan-tao. Study on compound catalyst for gasification and its mechanism[J]. Coal conversion, 2006, 29(1): 15-18.)

    20. [20]

      [20] 郝西维, 王黎, 吴嘉州. 煤温和气化技术研究进展[J]. 煤炭转化, 2008, 31(2): 83-89. (HAO Xi-wei, WANG Li, WU Jia-zhou. Progress of research on coal mild gasification[J]. Coal conversion, 2008, 31(2): 83-89.)

    21. [21]

      [21] 徐秀峰, 顾永达, 陈诵英. 煤焦气化反应的影响因素和反应机理的研究进展[J]. 煤炭转化, 1996, 19(2): 48-53. (XU Xiu-feng, GU Yong-da, CHEN Song-ying. The study of influential factors to char gasification reaction and mechanism[J]. Coal conversion, 1996, 19(2): 48-53.)

  • 加载中
    1. [1]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    2. [2]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    3. [3]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    6. [6]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    7. [7]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    8. [8]

      Fengying ZhangYanglin MeiYuman JiangShenshen ZhengKaibo ZhengYing Zhou . Research progress of transient absorption spectroscopy in solar energy conversion and utilization. Acta Physico-Chimica Sinica, 2025, 41(9): 100118-0. doi: 10.1016/j.actphy.2025.100118

    9. [9]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    10. [10]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    11. [11]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    12. [12]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    13. [13]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    14. [14]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    15. [15]

      Kun RongCuilian WenJiansen WenXiong LiQiugang LiaoSiqing YanChao XuXiaoliang ZhangBaisheng SaZhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053

    16. [16]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    17. [17]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    18. [18]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    19. [19]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    20. [20]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

Metrics
  • PDF Downloads(0)
  • Abstract views(659)
  • HTML views(99)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return