Citation:
XU Bing-qing, ZHANG Xiao-qing, LONG Hua-li, SHANG Shu-yong, YIN Yong-xiang. Hydrogen making from steam-carbon reaction catalyzed by K2CO3 with light irradiation heating[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(9): 1102-1107.
-
With the simulated solar reaction system irradiated by Xenon lamp, an experiment of hydrogen making from steam-carbon reaction catalyzed by K2CO3 was carried out at about 700 ℃. It is found that the rate of hydrogen production with catalysts is 10 times more than that without catalysts, and there is no obvious difference in the rate of hydrogen production with the catalyst content from 10% to 20%. The oxygen-transfer mechanism for hydrogen making from steam-carbon reaction catalyzed by K2CO3 was discussed in detail, which was used to explain the unbalanced phenomenon of hydrogen and oxygen in reaction product. The efficiency of light energy conversion to chemical energy reaches to 13.12% in the experiment, which is better than that of photovoltaic method(10.85%). Some approaches for improving the energy conversion efficiency were proposed.
-
-
-
[1]
[1] STEINFELD A, WEIMER A W. Thermochemical production of fuels with concentrated solar energy[J]. Opt Express, 2010, 18(S1): A100-A111.
-
[2]
[2] ROMERO MANUEL, STEINFELD ALDO. Concentrating solar thermal power and thermochemical fuels[J]. Energy Environ Sci, 2012, 5(11): 9234-9245.
-
[3]
[3] SMESTAD G P, STEINFELD A. Review: Photochemical and thermochemical production of solar fuels from H2O and CO2 using metal oxide catalysts[J]. Ind Eng Chem Res, 2012, 51(37): 11828-11840.
-
[4]
[4] 王宝辉, 吴红军, 刘淑芝, 盖翠萍. 太阳能分解水制氢技术研究进展[J]. 化工进展, 2006, 25(7): 733-738. (WANG Bao-hui, WU Hong-jun, LIU Shu-zhi, GAI Cui-ping. Advance on research of hydrogen production by solar water splitting[J]. Chemical Industry and Engineering Progress, 2006, 25(7): 733-738.)
-
[5]
[5] TRIBUTSCH H. Photovoltaic hydrogen generation[J]. Int J Hydrogen Energy, 2008, 33(21): 5911-5930.
-
[6]
[6] XIAO L, WU S Y, LI Y R. Advances in solar hydrogen production via two-step water-splitting thermochemical cycles based on metal redox reactions[J]. Renewable Energy, 2012, 41: 1-12.
-
[7]
[7] STAMATIOU A, LOUTZENHISER P G, STEINFELD A. Solar syngas production via H2O/CO2-splitting thermochemical cycles with Zn/ZnO and FeO/Fe3O4 redox reactions[J]. Chem Mater, 2010, 22(3): 851-859.
-
[8]
[8] 祝星, 王华, 魏永刚, 李孔斋, 晏冬霞. 金属氧化物两步法化学循环分解水制氢化学进[J]. 2010, 22(5): 1010-1020. (ZHU Xing, WANG Hua, WEI Yong-gang, LI Kong-zhai, YAN Dong-xia. Hydrogen production by two-step water-splitting thermochemical cycle based on metal oxide redox System[J]. Progress in Chemistry, 2010, 22(5): 1010-1020.)
-
[9]
[9] NOBUYUKI G, TETSURO M, NOBUYUKI K, TATSUYA K. Thermochemical two-step water splitting by internally circulating fluidized bed of NiFe2O4 particles: Successive reaction of thermal-reduction and water-decomposition steps[J]. Int J Hydrogen Energy, 2011, 36(8): 4757-4767.
-
[10]
[10] WORNER A, TAMME R. CO2 reforming of methane in a solar driven volumetric receiver-reactor[J]. Catal Today, 1998, 46(2): 165-174.
-
[11]
[11] BUCK R, MUIR J F, HOGAN RE.Carbon dioxide reforming of methane in a solar volumetric receiver/reactor: The CAESAR project[J]. Sol Energy Mater, 1991, 24(1): 449-463.
-
[12]
[12] MUIR J, HOGAN R, SKOCYPEC R, BUCK R. Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish: I-Test and analysis[J]. Solar Energy, 1994, 52(6): 467-477.
-
[13]
[13] KODAMA T, KIYAMA A. Solar methane reforming using a new type of catalytically-activated metallic foam absorber[J]. J Sol Energy Eng, 2004, 126(2): 808-811.
-
[14]
[14] BERMAN A, KARN R K, EPSTEIN M. A new catalyst system for high-temperature solar reforming of methane[J]. Energy Fuels, 2006, 20(2): 455-462.
-
[15]
[15] WANG J, SAKANISHI K, SAITO I. High-yield hydrogen production by steam gasification of hypercoal (ash-free coal extract) with potassium carbonate:Comparison with raw coal[J]. Energy Fuels, 2005, 19(5): 2114-2120.
-
[16]
[16] 金会心, 王华. 聚光太阳能加热昭通褐煤的气化试验研究[J]. 燃料化学学报, 2001, 29(6): 548-551. (JIN Hui-xin, WANG Hua. Gasification of Zhao tong Lignite Heated by Concentrated Solar Energy[J]. Journal of Fuel Chemistry and Technology, 2001, 29(6): 548-551.)
-
[17]
[17] WANG J, JIANG M Q, YAO Y H, ZHANG Y M, CAO J Q. Steam gasification of coal char catalyzed by K2CO3 for enhanced production of hydrogen with out formation of methane[J]. Fuel, 2009, 88(9): 1572-1579.
-
[18]
[18] MOULIJN J A, KAPTEIJN F. Towards a unified theory of reactions of carbon with oxygen-containing molecules[J]. Carbon, 1995, 33(8): 1155-1165.
-
[19]
[19] 孙雪莲, 王黎, 张占涛. 煤气化复合催化剂研究及机理探讨[J]. 煤炭转化, 2006, 29(1): 15-18. (SUN Xue-lian, WANG Li, ZHANG Zhan-tao. Study on compound catalyst for gasification and its mechanism[J]. Coal conversion, 2006, 29(1): 15-18.)
-
[20]
[20] 郝西维, 王黎, 吴嘉州. 煤温和气化技术研究进展[J]. 煤炭转化, 2008, 31(2): 83-89. (HAO Xi-wei, WANG Li, WU Jia-zhou. Progress of research on coal mild gasification[J]. Coal conversion, 2008, 31(2): 83-89.)
-
[21]
[21] 徐秀峰, 顾永达, 陈诵英. 煤焦气化反应的影响因素和反应机理的研究进展[J]. 煤炭转化, 1996, 19(2): 48-53. (XU Xiu-feng, GU Yong-da, CHEN Song-ying. The study of influential factors to char gasification reaction and mechanism[J]. Coal conversion, 1996, 19(2): 48-53.)
-
[1]
-
-
-
[1]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[2]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[3]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[4]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
-
[5]
Nengmin ZHU , Wenhao ZHU , Xiaoyao YIN , Songzhi ZHENG , Hao LI , Zeyuan WANG , Wenhao WEI , Xuanheng CHEN , Weihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419
-
[6]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[7]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[8]
Kun Rong , Cuilian Wen , Jiansen Wen , Xiong Li , Qiugang Liao , Siqing Yan , Chao Xu , Xiaoliang Zhang , Baisheng Sa , Zhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053
-
[9]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[10]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[11]
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067
-
[12]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[13]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[14]
Yue Zhao , Yanfei Li , Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001
-
[15]
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032
-
[16]
Linjie ZHU , Xufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207
-
[17]
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
-
[18]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[19]
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
-
[20]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(640)
- HTML views(94)