Citation:
PEI Su-peng, WU Gui-sheng, MAO Dong-sen. Surface species changes over ZrO2 modified Cu catalysts in the process of reduction and reaction[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(9): 1097-1101.
-
Cu model catalyst was prepared through thermal decomposition method and ZrO2/Cu was obtained through impregnation method. The morphology and surface composition of the catalysts were investigated using SEM and XPS. Surface specie changes over Cu and ZrO2/Cu in the process of the reduction were investigated using in-situ Raman. In the mean time, CO and H2O were passed through in sequence, and the Raman spectra were recorded. The results show that surface of Cu mainly consists of CuO species while that of ZrO2/Cu contains rich surface hydroxyl groups besides CuO species. ZrO2/Cu is easier to be reduced to CuO with ZrO2 species agglomerating to floccus state. However, Cu2O formed over Cu catalysts after reduction. CO adsorption over Cu produces Cu-CO with the disappearance of Cu2O and production of CO2. Water is weakly adsorbed over Cu but is adsorbed strongly over ZrO2/Cu to produce Cu2O species via Cu-OH intermediate.
-
Keywords:
- Cu,
- ZrO2/Cu,
- in-situ Raman,
- surface species
-
-
-
[1]
[1] WU G, SUNY, LI Y, JIAO H, XIANG H, XU Y. The Nature of Cu/ZrO2 catalyst: Experimental and theoretical studies[J]. J Mol Struct Theochem, 2003, 626(1/3): 287-293.
-
[2]
[2] 吴贵升, 任 杰, 孙予罕. 焙烧温度对Cu/ZrO2和Cu-La2O3/ZrO2催化性能的影响[J]. 物理化学学报, 1999, 15(6): 564-567. (Sinica WU Gui-sheng, REN Jie, SUN Yu-han. The effect of calcination on the performance of Cu/ZrO2 and Cu-La2O3/ZrO2[J]. Acta Physico-Chimica, 1999, 15(6): 564-567.)
-
[3]
[3] YAO C, WANG L, LIU Y, WU G, CAO Y, DAI W, HE H, FAN K. Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts[J]. Appl Catal A:Gen, 2006, 297(2): 151-158.
-
[4]
[4] BIANCHI D, CHAFIK T, KHALFALLAH M, TEICHNER S J. Intermediate species on zirconia supported methanol aerogel catalysts: II. Adsorption of carbon monoxide on pure zirconia and on zirconia containing zinc oxide[J]. Appl Catal A:Gen, 1993, 105(2): 223-249.
-
[5]
[5] SUN Y, SERMON P A. Carbon monoxide hydrogenation over ZrO2 and Cu/ZrO2[J]. J Chem Soc Chem Commun, 1993, (16): 1242-1244.
-
[6]
[6] TAKEZAWA N, SHIMOKAWABE M, HIRAMATSU H. Steam reforming of methanol over Cu/ZrO2[J]. React Kinet Catal Lett, 1987, 33(1): 191-196.
-
[7]
[7] BIANCHI D, GASS J, KHALFALLAH M, TEICHNER S J. Intermediate species on zirconia supported methanol aerogel catalysts: I. State of the catalyst surface before and after the adsorption of hydrogen[J]. Appl Catal A:Gen, 1993, 101(2): 297-315.
-
[8]
[8] BIANCHI D, CHAFIK T, KHALFALLAH M, TEICHNER S J. Intermediate species on zirconia supported methanol aerogel catalysts: III. Adsorption of carbon monoxide on copper containing solids[J]. Appl Catal A:Gen, 1994, 112(1): 57-73.
-
[9]
[9] BIANCHI D, CHAFIK T, KHALFALLAH M, TEICHNER S J. Intermediate species on zirconia supported methanol aerogel catalysts: IV. Adsorption of carbon dioxide[J]. Appl Catal A:Gen, 1994, 112(2): 219-235.
-
[10]
[10] SZIZYBALSKI A, GIRGSDIES F, RABIS A, WANG Y, NIEDERBERGER M, RESSLER T. In situ investigations of structure-activity relationships of a Cu/ZrO2 catalyst for the steam reforming of methanol[J]. J Catal, 2005, 233(2): 297-307.
-
[11]
[11] FISHER I A, BELL A T. In-situ infrared study of methanol synthesis from H2/CO2 over Cu/SiO2 and Cu/ZrO2/SiO2[J]. J Catal, 1997, 172(1): 222-237.
-
[12]
[12] 吴贵升, 王宇红, 毛东森, 卢冠忠, 曹勇, 范康年. 铜的表面氧在甲醇水蒸气重整反应中的作用[J]. 化学学报, 2007, 65(17): 1757-1761. (WU Gui-sheng, WANG Yu-hong, MAO Dong-sen, LU Guan-zhong, CAO yong, FAN Kang-nian. The role of oxygen species on the surface of copper in methanol steam reforming[J]. Acta Chimica Sinica, 2007, 65(17): 1757-1761.)
-
[13]
[13] NAVIO J A, HIDALGO M C, COLO-N G, BOTTA S G, LITTER M I. Preparation and physicochemical properties of ZrO2 and Fe/ZrO2 prepared by a sol-gel technique[J]. Langmuir, 2001, 17(1): 202-210.
-
[14]
[14] CHRZANOWSKI J, IRWIN J C. Raman scattering from cupric oxide[J]. Solid State Commun, 1989, 70(1): 11-14.
-
[15]
[15] YU T, ZHAO X, SHEN Z X, WU Y H, SU W H. Investigation of individual CuO nanorods by polarized micro-Raman scattering[J]. J Cryst Growth, 2004, 268(3/4): 590-595.
-
[16]
[16] NIAURA G. Surface-enhanced Raman spectroscopic observation of two kinds of adsorbed OH? ions at copper electrode[J]. Electrochim Acta, 2000, 45(21): 3507-3519.
-
[17]
[17] MELENDRES C A, XU S, TANI B. A laser Raman spectroscopic study of anodic corrosion films on silver and copper[J]. J Electroanal Chem Interfacial Electrochem, 1984, 162(1/2): 343-349.
-
[18]
[18] NAUMENKO A P, BEREZOVSKA N I, BILIY M M, SHEVCHENKO O V. Vibrational analysis and Raman spectra of tetragonal zirconia[J]. Phys Chem Solid State, 2008, 9(1): 121-125.
-
[19]
[19] PAN X, FAN Z, CHEN W, DING Y, LUO H, BAO X. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles[J]. Nat Mater, 2007, 6: 507-511.
-
[20]
[20] 吴贵升, 毛东森, 卢冠忠, 曹勇, 范康年. ZrO2修饰Cu催化剂对甲醇吸附原位红外表征[J]. 物理化学学报, 2012, 28(2): 433-436. (WU Gui-sheng, MAO Dong-sen, LU Guan-zhong, CAO yong, FAN Kang-nian. In situ infrared characterization of methanol adsorption on ZrO2 modified Cu catalysts[J]. Acta Physico-Chimica Sinica, 2012, 28(2): 433-436.)
-
[21]
[21] WU G, WANG L, LIU Y, CAO Y, DAI W, HE H, FAN K. Implication of the role of oxygen anions and oxygen vacancies for methanol decomposition over zirconia supported copper catalysts[J]. Appl Surf Sci, 2006, 253(2): 974-982.
-
[1]
-
-
-
[1]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[2]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[3]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[4]
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
-
[5]
Zhijia Zhang , Shihao Sun , Yuefang Chen , Yanhao Wei , Mengmeng Zhang , Chunsheng Li , Yan Sun , Shaofei Zhang , Yong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922
-
[6]
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
-
[7]
Wenhao Chen , Muxuan Wu , Han Chen , Lue Mo , Yirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698
-
[8]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[9]
Junyi Yu , Yin Cheng , Anhong Cai , Xianfeng Huang , Qingrui Zhang . Synthetic Cu(Ⅲ) from copper plating wastewater for onsite decomplexation of Cu(Ⅱ)- and Ni(Ⅱ)-organic complexes. Chinese Chemical Letters, 2025, 36(2): 110549-. doi: 10.1016/j.cclet.2024.110549
-
[10]
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
-
[11]
Xingmin Chen , Yunyun Wu , Yao Tang , Peishen Li , Shuai Gao , Qiang Wang , Wen Liu , Sihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245
-
[12]
Meirong HAN , Xiaoyang WEI , Sisi FENG , Yuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150
-
[13]
Yuan ZHU , Xiaoda ZHANG , Shasha WANG , Peng WEI , Tao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232
-
[14]
Yanxue Wu , Xijun Xu , Shanshan Shi , Fangkun Li , Shaomin Ji , Jingwei Zhao , Jun Liu , Yanping Huo . Facile construction of Cu2-xSe@C nanobelts as anode for superior sodium-ion storage. Chinese Chemical Letters, 2025, 36(6): 110062-. doi: 10.1016/j.cclet.2024.110062
-
[15]
Yongpo Zhang , Xinfeng Li , Yafei Song , Mengyao Sun , Congcong Yin , Chunyan Gao , Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092
-
[16]
Bofei JIA , Zhihao LIU , Zongyuan GAO , Shuai ZHOU , Mengxiang WU , Qian ZHANG , Xiamei ZHANG , Shuzhong CHEN , Xiaohan YANG , Yahong LI . Cu(Ⅱ) and Cu(Ⅰ) complexes based on derivatives of imidazo[1,5-a]pyridine: Synthesis, structures, in situ metal-ligand reactions, and catalytic activity. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1020-1036. doi: 10.11862/CJIC.20240317
-
[17]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
-
[18]
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
-
[19]
Juan Yuan , Bin Zhang , Jinping Wu , Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014
-
[20]
Gangsheng Li , Xiang Yuan , Fu Liu , Zhihua Liu , Xujie Wang , Yuanyuan Liu , Yanmin Chen , Tingting Wang , Yanan Yang , Peicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(347)
- HTML views(16)