Citation: PEI Su-peng, WU Gui-sheng, MAO Dong-sen. Surface species changes over ZrO2 modified Cu catalysts in the process of reduction and reaction[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(9): 1097-1101. shu

Surface species changes over ZrO2 modified Cu catalysts in the process of reduction and reaction

  • Corresponding author: WU Gui-sheng, 
  • Received Date: 15 January 2013
    Available Online: 29 March 2013

    Fund Project: 上海重点学科基金(J51503) (J51503)上海市分子催化和功能材料重点实验室基金(2009KF06)。 (2009KF06)

  • Cu model catalyst was prepared through thermal decomposition method and ZrO2/Cu was obtained through impregnation method. The morphology and surface composition of the catalysts were investigated using SEM and XPS. Surface specie changes over Cu and ZrO2/Cu in the process of the reduction were investigated using in-situ Raman. In the mean time, CO and H2O were passed through in sequence, and the Raman spectra were recorded. The results show that surface of Cu mainly consists of CuO species while that of ZrO2/Cu contains rich surface hydroxyl groups besides CuO species. ZrO2/Cu is easier to be reduced to CuO with ZrO2 species agglomerating to floccus state. However, Cu2O formed over Cu catalysts after reduction. CO adsorption over Cu produces Cu-CO with the disappearance of Cu2O and production of CO2. Water is weakly adsorbed over Cu but is adsorbed strongly over ZrO2/Cu to produce Cu2O species via Cu-OH intermediate.
  • 加载中
    1. [1]

      [1] WU G, SUNY, LI Y, JIAO H, XIANG H, XU Y. The Nature of Cu/ZrO2 catalyst: Experimental and theoretical studies[J]. J Mol Struct Theochem, 2003, 626(1/3): 287-293.

    2. [2]

      [2] 吴贵升, 任 杰, 孙予罕. 焙烧温度对Cu/ZrO2和Cu-La2O3/ZrO2催化性能的影响[J]. 物理化学学报, 1999, 15(6): 564-567. (Sinica WU Gui-sheng, REN Jie, SUN Yu-han. The effect of calcination on the performance of Cu/ZrO2 and Cu-La2O3/ZrO2[J]. Acta Physico-Chimica, 1999, 15(6): 564-567.)

    3. [3]

      [3] YAO C, WANG L, LIU Y, WU G, CAO Y, DAI W, HE H, FAN K. Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts[J]. Appl Catal A:Gen, 2006, 297(2): 151-158.

    4. [4]

      [4] BIANCHI D, CHAFIK T, KHALFALLAH M, TEICHNER S J. Intermediate species on zirconia supported methanol aerogel catalysts: II. Adsorption of carbon monoxide on pure zirconia and on zirconia containing zinc oxide[J]. Appl Catal A:Gen, 1993, 105(2): 223-249.

    5. [5]

      [5] SUN Y, SERMON P A. Carbon monoxide hydrogenation over ZrO2 and Cu/ZrO2[J]. J Chem Soc Chem Commun, 1993, (16): 1242-1244.

    6. [6]

      [6] TAKEZAWA N, SHIMOKAWABE M, HIRAMATSU H. Steam reforming of methanol over Cu/ZrO2[J]. React Kinet Catal Lett, 1987, 33(1): 191-196.

    7. [7]

      [7] BIANCHI D, GASS J, KHALFALLAH M, TEICHNER S J. Intermediate species on zirconia supported methanol aerogel catalysts: I. State of the catalyst surface before and after the adsorption of hydrogen[J]. Appl Catal A:Gen, 1993, 101(2): 297-315.

    8. [8]

      [8] BIANCHI D, CHAFIK T, KHALFALLAH M, TEICHNER S J. Intermediate species on zirconia supported methanol aerogel catalysts: III. Adsorption of carbon monoxide on copper containing solids[J]. Appl Catal A:Gen, 1994, 112(1): 57-73.

    9. [9]

      [9] BIANCHI D, CHAFIK T, KHALFALLAH M, TEICHNER S J. Intermediate species on zirconia supported methanol aerogel catalysts: IV. Adsorption of carbon dioxide[J]. Appl Catal A:Gen, 1994, 112(2): 219-235.

    10. [10]

      [10] SZIZYBALSKI A, GIRGSDIES F, RABIS A, WANG Y, NIEDERBERGER M, RESSLER T. In situ investigations of structure-activity relationships of a Cu/ZrO2 catalyst for the steam reforming of methanol[J]. J Catal, 2005, 233(2): 297-307.

    11. [11]

      [11] FISHER I A, BELL A T. In-situ infrared study of methanol synthesis from H2/CO2 over Cu/SiO2 and Cu/ZrO2/SiO2[J]. J Catal, 1997, 172(1): 222-237.

    12. [12]

      [12] 吴贵升, 王宇红, 毛东森, 卢冠忠, 曹勇, 范康年. 铜的表面氧在甲醇水蒸气重整反应中的作用[J]. 化学学报, 2007, 65(17): 1757-1761. (WU Gui-sheng, WANG Yu-hong, MAO Dong-sen, LU Guan-zhong, CAO yong, FAN Kang-nian. The role of oxygen species on the surface of copper in methanol steam reforming[J]. Acta Chimica Sinica, 2007, 65(17): 1757-1761.)

    13. [13]

      [13] NAVIO J A, HIDALGO M C, COLO-N G, BOTTA S G, LITTER M I. Preparation and physicochemical properties of ZrO2 and Fe/ZrO2 prepared by a sol-gel technique[J]. Langmuir, 2001, 17(1): 202-210.

    14. [14]

      [14] CHRZANOWSKI J, IRWIN J C. Raman scattering from cupric oxide[J]. Solid State Commun, 1989, 70(1): 11-14.

    15. [15]

      [15] YU T, ZHAO X, SHEN Z X, WU Y H, SU W H. Investigation of individual CuO nanorods by polarized micro-Raman scattering[J]. J Cryst Growth, 2004, 268(3/4): 590-595.

    16. [16]

      [16] NIAURA G. Surface-enhanced Raman spectroscopic observation of two kinds of adsorbed OH? ions at copper electrode[J]. Electrochim Acta, 2000, 45(21): 3507-3519.

    17. [17]

      [17] MELENDRES C A, XU S, TANI B. A laser Raman spectroscopic study of anodic corrosion films on silver and copper[J]. J Electroanal Chem Interfacial Electrochem, 1984, 162(1/2): 343-349.

    18. [18]

      [18] NAUMENKO A P, BEREZOVSKA N I, BILIY M M, SHEVCHENKO O V. Vibrational analysis and Raman spectra of tetragonal zirconia[J]. Phys Chem Solid State, 2008, 9(1): 121-125.

    19. [19]

      [19] PAN X, FAN Z, CHEN W, DING Y, LUO H, BAO X. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles[J]. Nat Mater, 2007, 6: 507-511.

    20. [20]

      [20] 吴贵升, 毛东森, 卢冠忠, 曹勇, 范康年. ZrO2修饰Cu催化剂对甲醇吸附原位红外表征[J]. 物理化学学报, 2012, 28(2): 433-436. (WU Gui-sheng, MAO Dong-sen, LU Guan-zhong, CAO yong, FAN Kang-nian. In situ infrared characterization of methanol adsorption on ZrO2 modified Cu catalysts[J]. Acta Physico-Chimica Sinica, 2012, 28(2): 433-436.)

    21. [21]

      [21] WU G, WANG L, LIU Y, CAO Y, DAI W, HE H, FAN K. Implication of the role of oxygen anions and oxygen vacancies for methanol decomposition over zirconia supported copper catalysts[J]. Appl Surf Sci, 2006, 253(2): 974-982.

  • 加载中
    1. [1]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    2. [2]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    3. [3]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    4. [4]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    5. [5]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    6. [6]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    7. [7]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    8. [8]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    9. [9]

      Junyi YuYin ChengAnhong CaiXianfeng HuangQingrui Zhang . Synthetic Cu(Ⅲ) from copper plating wastewater for onsite decomplexation of Cu(Ⅱ)- and Ni(Ⅱ)-organic complexes. Chinese Chemical Letters, 2025, 36(2): 110549-. doi: 10.1016/j.cclet.2024.110549

    10. [10]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    11. [11]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    12. [12]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    13. [13]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    14. [14]

      Yanxue WuXijun XuShanshan ShiFangkun LiShaomin JiJingwei ZhaoJun LiuYanping Huo . Facile construction of Cu2-xSe@C nanobelts as anode for superior sodium-ion storage. Chinese Chemical Letters, 2025, 36(6): 110062-. doi: 10.1016/j.cclet.2024.110062

    15. [15]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    16. [16]

      Bofei JIAZhihao LIUZongyuan GAOShuai ZHOUMengxiang WUQian ZHANGXiamei ZHANGShuzhong CHENXiaohan YANGYahong LI . Cu(Ⅱ) and Cu(Ⅰ) complexes based on derivatives of imidazo[1,5-a]pyridine: Synthesis, structures, in situ metal-ligand reactions, and catalytic activity. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1020-1036. doi: 10.11862/CJIC.20240317

    17. [17]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    18. [18]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    19. [19]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    20. [20]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

Metrics
  • PDF Downloads(0)
  • Abstract views(347)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return