Citation:
Sameh M. K. Aboul-Fotouh. Effect of ultrasonic irradiation and/or halogenation on the catalytic performance of γ-Al2O3 for methanol dehydration to dimethyl ether[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(9): 1077-1084.
-
Dimethyl ether (DME) is amongst one of the most promising alternative, renewable and clean fuels being considered as a future energy carrier. In this study, the comparative catalytic performance of the halogenated γ-Al2O3 prepared from two halogen precursors (ammonium chloride and ammonium fluoride) is presented. The impact of ultrasonic irradiation was evaluated in order to optimize both the halogen precursor for the production of DME from methanol in a fixed bed reactor. The catalysts were characterized by SEM, XRD, BET and NH3-TPD. Under reaction conditions where the temperature ranged from 200 to 400 ℃ with a WHSV =15.9 h-1 was found that the halogenated catalysts showed higher activity at all reaction temperatures. However, the halogenated alumina catalysts prepared under the effect of ultrasonic irradiation showed higher performance of γ-Al2O3 for DME formation. The chlorinated γ-Al2O3 catalysts showed a higher activity and selectivity for DME production than fluorinated versions.
-
-
-
[1]
[1] FLEISCH T H, BASU A, GRADASSI M J, MASIN J G. Dimethyl ether: A fuel for the 21st century[J]. Stud Surf Sci Catal, 1997, 107: 117-125.
-
[2]
[2] SEMELSBERGER T A, BORUP R L, GREENE H L. Dimethyl ether (DME) as an alternative fuel[J]. J Power Sources, 2006, 156(2): 497-511.
-
[3]
[3] VISHWANATHAN V, JUN K W, KIM J W, ROH H S. Vapour phase dehydration of crude methanol to dimethyl ether over Na-modified H-ZSM-5 catalysts[J]. Appl Catal A: Gen, 2004, 276(1/2): 251-256.
-
[4]
[4] CAI G Y, LIU Z M, SHI R M, HE C Q, YANG L X, SUN C L, CHANG Y J. Light alkenes from syngas via dimethyl ether[J]. Appl Catal A: Gen, 1995, 125(1): 29-38.
-
[5]
[5] XU M T, GOODMAN D W, BHATTACHARYYA A. Catalytic dehydration of methanol to dimethyl ether (DME) over Pd/Cab-O-Sil catalysts[J]. Appl Catal A: Gen, 1997, 149(2): 303-309.
-
[6]
[6] KIM S D, BAEK S C, LEE Y J, JUN K W, KIM M J, YOO I S. Effect of γ-alumina content on catalytic performance of modified ZSM-5 for dehydration of crude methanol to dimethyl ether[J]. Appl Catal A: Gen, 2006, 309(1): 139-143.
-
[7]
[7] VISHWANATHAN V, ROH H S, KIM J W, JUN K W. Surface properties and catalytic activity of TiO2 ZrO2 mixed oxides in dehydration of methanol to dimethyl ether[J]. Catal Lett, 2004, 96(1/2): 23-28.
-
[8]
[8] FEI J H, HOU Z Y, ZHU B, LOU H, ZHENG X M. Synthesis of dimethyl ether (DME) on modified HY zeolite and modified HY zeolite-supported Cu-Mn-Zn catalysts[J]. Appl Catal A: Gen, 2006, 304: 49-54.
-
[9]
[9] YARIPOUR F, BAGHAEI F, SCHMIDT I, PERREGAARD J. Catalytic dehydration of methanol to dimethyl ether (DME) over solid-acid catalysts[J]. Catal Commun, 2005, 6(2): 147-152.
-
[10]
[10] KIM S M, LEE Y J, BAE J W, POTDAR H S, JUN K W. Synthesis and characterization of a highly active alumina catalyst for methanol dehydration to dimethyl ether[J]. Appl Catal A: Gen, 2008, 348(1): 113-120.
-
[11]
[11] TANG Q, XU H, ZHENG Y, WANG J, LI H, ZHANG J. Catalytic dehydration of methanol to dimethyl ether over micro-mesoporous ZSM-5/MCM-41 composite molecular sieves[J]. Appl Catal A: Gen, 2012, 413-414: 36-42.
-
[12]
[12] KESHAVARZ A R, REZAEI M, YARIPOUR F. Preparation of nanocrystalline γ-Al2O3 catalyst using different procedures for methanol dehydration to dimethylether[J]. Journal of Natural Gas Chemistry, 2011, 20(3): 334-338.ü
-
[13]
[13] RAOOF F, TAGHIZADEH M, ELIASSI A, YARIPOUR F. Effects of temperature and feed composition on catalytic dehydration of methanol to dimethyl ether over γ-alumina[J]. Fuel, 2008, 87(13/14): 2967-2971.
-
[14]
[14] KHOM-IN J, PRASERTHDAM P, PANPRANOT J, MEKASUWANDUMRONG O. Dehydration of methanol to dimethyl ether over nanocrystalline Al2O3 with mixed γ- and χ-crystalline phases[J].Catal Commun, 2008, 9(10): 1955-1958.ü
-
[15]
[15] MOLLAVALI M, YARIPOUR F, MOHAMMADI-JAM S, ATASHI H. Relationship between surface acidity and activity of solid-acid catalysts in vapour phase dehydration of methanol[J]. Fuel Process Technol, 2009, 90(9): 1093-1098.
-
[16]
[16] EBEID M F, ALI A, AMIN A, ABOUL-FOTOUH S. Heteropoly acids supported on α-Al2O3 as solid acid catalysts for methanol transformation[J]. Collect Czech Chem Commun, 1993, 58(9): 2079-2089.
-
[17]
[17] AMIN A, ALI A, ABOUL-FOTOUH S, EBEID E F. Surface studies and nature of active sites of supported heteropolyacids as catalysts in methanol dehydration[J]. Collect Czech Chem Commun, 1994, 59(4): 820-832.
-
[18]
[18] LIU D, YAO C, ZHANG J, FANG D, CHEN D. Catalytic dehydration of methanol to dimethyl ether over modified γ-Al2O3 catalyst[J]. Fuel, 2011, 90(5): 1738-1742.
-
[19]
[19] JIANG S, HWANG J, JIN T, CAI T, CHO W, BAEK Y, PARK S. Dehydration of methanol to dimethyl ether over ZSM-5 zeolite[J]. Bull Korean Chem Soc, 2004, 25(2): 185-189.
-
[20]
[20] SUN KOU M R, MENDIOROZ S, SALERNO P, MUNOZ V. Catalytic activity of pillared clays in methanol conversion[J]. Appl Catal A: Gen, 2003, 240(1): 273-285.
-
[21]
[21] LERTJIAMRATN K, PRASERTHDAM P, ARAI M, PANPRANOT J. Modification of acid properties and catalytic properties of AlPO4 by hydrothermal pretreatment for methanol dehydration to dimethyl ether[J]. Appl Catal A: Gen, 2010, 378(1): 119-123.
-
[22]
[22] YARIPOUR F, BAGHAEI F, SCHMIDT I, PERREGAARD J. Synthesis of dimethyl ether from methanol over aluminium phosphate and silica-titania catalysts[J]. Catal Commun, 2005, 6(8): 542-549.
-
[23]
[23] ABOUL-FOTOUH S M K, ABOUL-GHEIT N A K, HASSAN M M I. Conversion of methanol using modified H-MOR zeolite catalysts[J]. Chinese Journal of Catalysis, 2011, 32(3): 412-417.
-
[24]
[24] ABOUL-FOTOUH S M, ABOUL-GHEIT A K. Hydroconversion of cyclohexene using platinum-containing catalysts promoted with other noble metals and chlorine or fluorine[J]. Appl Catal A: Gen, 2001, 208(1/2): 55-61.
-
[25]
[25] ABOUL-GHEIT A K, ABOUL-FOTOUH S M, ABDEL-HAMID S M, ABOUL-GHEIT N A K. Effect of hydrochlorination and hydrofluorination of H-ZSM-5 on the catalytic hydroconversion reactions of cyclohexene[J]. Appl Catal A: Gen, 2006, 297(1): 102-110.
-
[26]
[26] LYCZKO N, ESPITALIER F, LOUISNARD O, SCHWARTZENTRUBER J. Effect of ultrasound on the induction time and the metastable zone widths of potassium sulphate[J]. Chem Eng J, 2002, 86(3): 233-241.
-
[27]
[27] TSAI T C. Application of zeolites in petroleum industries[J]. Catal Process, 1995, 3(4): 37-48.
-
[28]
[28] ABOUL-FOTOUH S M. Cyclohexen reactivity using catalysts containing Pt, Re and PtRe supported on Na- and H-mordenite[J]. Journal of Chinese Chemistry Society, 2003, 50: 1151-1158.
-
[29]
[29] RODRIGUEZ L M, ALCARAZ J, HERNANDEZ M, TAARIT B Y, VRINAT M. Alkylation of benzene with propylene catalyzed by fluorined alumina[J]. Appl Catal A: Gen, 1998, 169(1): 15-27.
-
[30]
[30] NASIKIN M, WAHID A. Effect of ultrasonic during preparation on Cu-based catalyst performance for hydrogenation of CO, to methanol[J]. AJChE, 2005, 5: 111-115.
-
[31]
[31] LII J L, INUI T. Enhancement in methanol synthesis activity of a copper/zinc/aluminum oxide catalyst by ultrasonic treatment during the course of the preparation procedure[J]. Appl Catal A: Gen, 1996, 139(1/2): 87-96.
-
[32]
[32] CHAVE T, NIKITENKO S I, GRANIER D, ZEMB T. Sonochemical reactions with mesoporous alumina[J]. Ultrason Sonochem, 2009, 16(4): 481-487.
-
[33]
[33] REZAEI M, ALAVI S M, SAHEBDELFAR S, YAN Z F. Tetragonal nanocrystalline zirconia powder with high surface area and mesoporous structure[J]. Powder Technol, 2006, 168(2): 59-63.
-
[34]
[34] FISCHER L, HAELV, KASZTELAN S, D, ESPINOSE DE LA CAILLERIE J B. Identification of fluorine sites at the surface of fluorinated γ-alumina by two-dimensional MAS NMR[J]. Solid State Nucl Magn Reson, 2000, 16(1/2): 85-91.
-
[35]
[35] OZIMEK B, GRZECHOWIAK J, RADOMYSKI B, SZEZYGLOWSKA G. Cyclohexene isomerization activity of aluminas with low Na+contamination[J]. React Kinet Catal Lett, 1981, 17(1/2): 139-142.
-
[36]
[36] OZIMEK B, RADOMYSKI B. Acid-base strength of Cl? containing aluminate aluminas with low Na+ contamination[J]. React Kinet Catal Lett, 1981, 15(4): 407-412.
-
[37]
[37] ARENA F, FRUSTERL F, MONDELLER N, GIORDANO N. Interaction pathway of chloride ions with γ -Al2O3: Surface acidity and thermal stability of the Cl/γ-Al2O3 system[J]. J Chem Soc, Faraday Trans, 1992, 88: 3353-3356.
-
[38]
[38] ALI A A, ALI L I, ABOUL-FOTOUH S M, ABOUL-GHEIT A K. Hydrogenation of aromatics on modified platinum-alumina catalysts[J]. Appl Catal A: Gen, 1998, 170(2): 285-296.
-
[39]
[39] ALI L I, ALI A A, ABOUL-FOTOUH S M, ABOUL-GHEIT A K. Hydroisomerization, hydrocracking and dehydrocyclization of n-pentane and n-hexane using mono-and bimetallic catalysts promoted with fluorine[J]. Appl Catal A: Gen, 2001, 215(1/2): 161-173.
-
[40]
[40] YARIPOUR F, BAGHAEI F, SCHMIDT I, PERREGAARD J. Synthesis of dimethyl ether from methanol over aluminium phosphate and silica-titania catalysts[J]. Catal Commun, 2005, 6(8): 542-549.
-
[41]
[41] KHOM-IN J, PRASERTHDAM P, PANPRANOT J, MEKASUWANDUMRONG O. Dehydration of methanol to dimethyl ether over nanocrystalline Al2O3 with mixed γ- and χ-crystalline phases[J]. Catal Commun, 2008, 9(10): 1955-1958.
-
[42]
[42] ASKARI S, HALLADJ R, SOHRABI M. Methanol conversion to light olefins over sonochemically prepared SAPO-34 nanocatalyst[J]. Micropor Mesopor Materials, 2012, 163: 334-342.
-
[43]
[43] CAMPBELL S M, JIANG X Z, HOWE R F. Methanol to hydrocarbons: Spectroscopic studies and the significance of extra-framework aluminium[J]. Micropor Mesopor Mater, 1999, 29(1/2): 91-108.
-
[44]
[44] ABOUL-FOTOUH S M K, HASSAN M M I. Conversion of methanol on CuO/H-MOR and CuO/H-ZSM-5 catalysts[J]. Acta Chim Solv, 2010, 57(4): 872-879.
-
[1]
-
-
-
[1]
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
-
[2]
Yan Cheng , Hua-Peng Ruan , Yan Peng , Longhe Li , Zhenqiang Xie , Lang Liu , Shiyong Zhang , Hengyun Ye , Zhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554
-
[3]
Shuanglin TIAN , Tinghong GAO , Yutao LIU , Qian CHEN , Quan XIE , Qingquan XIAO , Yongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482
-
[4]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[5]
Han Yan , Jingming Yao , Zhangran Ye , Qiaoquan Lin , Ziqi Zhang , Shulin Li , Dawei Song , Zhenyu Wang , Chuang Yu , Long Zhang . Al-F co-doping towards enhanced electrolyte-electrodes interface properties for halide and sulfide solid electrolytes. Chinese Chemical Letters, 2025, 36(1): 109568-. doi: 10.1016/j.cclet.2024.109568
-
[6]
Zhen Liu , Zhi-Yuan Ren , Chen Yang , Xiangyi Shao , Li Chen , Xin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939
-
[7]
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
-
[8]
Yu-Yu Tan , Lin-Heng He , Wei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986
-
[9]
Lan Yang , Yu Li , Mou Jiang , Rui Zhou , Hengjiang Cong , Minghui Yang , Lei Zhang , Shenhui Li , Yunhuang Yang , Maili Liu , Xin Zhou , Zhong-Xing Jiang , Shizhen Chen . Fluorinated [2]rotaxanes as sensitive 19F MRI agents: Threading for higher sensitivity. Chinese Chemical Letters, 2024, 35(10): 109512-. doi: 10.1016/j.cclet.2024.109512
-
[10]
Peng Wang , Jianjun Wang , Ni Song , Xin Zhou , Ming Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748
-
[11]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[12]
Ruixue Liu , Xiaobing Ding , Qiwei Lang , Gen-Qiang Chen , Xumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037
-
[13]
Zhuangzhuang Zhang , Yaru Qiao , Jun Zhao , Dai-Huo Liu , Mengmin Jia , Hongwei Tang , Liang Wang , Dongmei Dai , Bao Li . Fluorine-doped K0.39Mn0.77Ni0.23O1.9F0.1 microspheres with highly reversible oxygen redox reaction for potassium-ion battery cathode. Chinese Chemical Letters, 2025, 36(3): 109907-. doi: 10.1016/j.cclet.2024.109907
-
[14]
Haiming Wu , Gaya N. Andrew , Rajini Anumula , Zhixun Luo . Corrigendum to 'How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4 (dppy)4 Cl2 vs. Cu21 (dppy)10 with altered photoluminescence' [Chin. Chem. Lett. 35 (2024) 108340]. Chinese Chemical Letters, 2024, 35(12): 109912-. doi: 10.1016/j.cclet.2024.109912
-
[15]
Ziling Jiang , Chen Liu , Jie Yang , Xia Li , Chaochao Wei , Qiyue Luo , Zhongkai Wu , Lin Li , Liping Li , Shijie Cheng , Chuang Yu . Designing F-doped Li3InCl6 electrolyte with enhanced stability for all-solid-state lithium batteries in a wide voltage window. Chinese Chemical Letters, 2025, 36(6): 109741-. doi: 10.1016/j.cclet.2024.109741
-
[16]
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
-
[17]
Xinyi Hu , Riguang Zhang , Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157
-
[18]
Xinyu You , Xin Zhang , Shican Jiang , Yiru Ye , Lin Gu , Hexun Zhou , Pandong Ma , Jamal Ftouni , Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265
-
[19]
Ming Huang , Xiuju Cai , Yan Liu , Zhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323
-
[20]
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(316)
- HTML views(29)