Citation:
LU Qiang, LIAO Hang-tao, ZHANG Yang, ZHANG Jun-jiao, DONG Chang-qing. Reaction mechanism of low-temperature fast pyrolysis of fructose to produce 5-hydroxymethyl furfural[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(9): 1070-1076.
-
Low-temperature fast pyrolysis of fructose offered a promising way to produce 5-hydroxymethyl furfural (HMF) together with furfural (FF) as an important by-product. In this work, pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) measurements were performed to investigate the product distribution from fast pyrolysis of fructose; the effects of pyrolysis temperature on the HMF formation behaviors were considered. The results indicated that HMF is the predominant product from the fast pyrolysis of fructose; the product mixture with highest content of HMF (81.2%, determined by the gas chromatography peak areas) is obtained at 250 ℃, while the maximal yield of HMF is achieved at 350 ℃. Five possible pathways of HMF formation from fructose were considered by density functional theory (DFT). The DFT calculation results suggested that pathway 1 is most energetically favored, i.e. fructose molecule first undergoes a dehydration process by losing -OH at C2 and -H at C1 and then it is subjected to subsequent dehydrations involving -OH at C3 and -H of hydroxyl group at C1 as well as -OH at C4 and -H at C5, to form HMF.
-
-
-
[1]
[1] BRIDGWATER A V. Review of fast pyrolysis of biomass and product upgrading[J]. Biomass Bioenergy, 2012, 38: 68-94.
-
[2]
[2] ISAHAK W N R W, HISHAM M W M, YARMO M A, YUN H. A review on bio-oil production from biomass by using pyrolysis method[J]. Renew Sust Energ Rev, 2012, 16(8): 5910-5923.
-
[3]
[3] 朱锡锋, 陆强. 生物质快速热解制取生物油[J]. 科技导报, 2007, 25(21): 69-75. (ZHU Xi-feng, LU Qiang. Fast pyrolysis of biomass for producing bio-oil[J]. Science & Technology Review, 2007, 25(21): 69-75.)
-
[4]
[4] 吴逸民, 赵增立, 吴文强, 李海滨. 基于裂解气质联用分析的生物质逐级热解研究[J]. 燃料化学学报, 2010, 38(2): 168-173. (WU Yi-min, ZHAO Zeng-li, WU Wen-qiang, LI Hai-bin. Step-pyrolysis of biomass using pyrolysis-gas chromatography/mass spectrometry[J]. Journal of Fuel Chemistry and Technology, 2010, 38(2): 168-173.)
-
[5]
[5] CZERNIK S, BRIDGWATER A V. Overview of applications of biomass fast pyrolysis oil[J]. Energy Fuels, 2004, 18(2): 590-598.
-
[6]
[6] 陆强, 朱锡锋. 利用固体超强酸催化热解纤维素制备左旋葡萄糖酮[J]. 燃料化学学报, 2011, 39(6): 425-431. (LU Qiang, ZHU Xi-feng. Production of levoglucosenone from fast pyrolysis of cellulose catalyzed by solid superacids[J]. Journal of Fuel Chemistry and Technology, 2011, 39(6): 425-431.)
-
[7]
[7] WANG Z, LU Q, ZHU X F, ZHANG Y. Catalytic fast pyrolysis of cellulose to prepare levoglucosenone using sulfated zirconia[J]. Chem Sus Chem, 2011, 4(1): 79-84.
-
[8]
[8] TORRI C, LESCI I G, FABBRI D. Analytical study on the production of a hydroxylactone from catalytic pyrolysis of carbohydrates with nanopowder aluminium titanate[J]. J Anal Appl Pyrol, 2009, 84(1): 25-30.
-
[9]
[9] 王军, 张春鹏, 欧阳平凯. 5-羟甲基糠醛制备及应用的研究进展[J]. 化工进展, 2008, 27(5): 702-707. (WANG Jun, ZHANG Chun-peng, OUYANG Ping-kai. Advances in production and application of 5-hydroxymethyl furfural[J]. Chemical Industry and Engineering Progress, 2008, 27(5): 702-707.)
-
[10]
[10] 姜楠, 齐崴, 黄仁亮, 苏荣欣, 何志敏. 生物质制备5-羟甲基糠醛的研究进展[J]. 化工进展, 2011, 30(9): 1937-1945. (JIANG Nan, QI Wei, HUANG Ren-liang, SU Rong-xin, HE Zhi-min. Research progress of synthesis of 5-hydroxymethylfurfural from biomass[J]. Chemical Industry and Engineering Progress, 2011, 30(9): 1937-1945.)
-
[11]
[11] LESHKOV Y R,CHHEDA J N,DUMESIC J A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose[J]. Science, 2006, 312(5782): 1933-1937.
-
[12]
[12] ZHAO H, HOLLADAY J E, BROWN H, ZHANG Z C. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural[J]. Science, 2007, 316(5831): 1597-1600.
-
[13]
[13] PAINE J B, PITHAWALLA Y B, NAWORAL J D. Carbohydrate pyrolysis mechanisms from isotopic labeling part 4. The pyrolysis of D-glucose: The formation of furans[J]. J Anal Appl Pyrol, 2008, 83(1): 37-63.
-
[14]
[14] ASSARY R S, CURTISS L A. Comparison of sugar molecule decomposition through glucose and fructose: A high-level quantum chemical study[J]. Energy Fuels, 2011, 26(2): 1344-1352.
-
[15]
[15] GLENN R P, GEOFFREY N R. Pyrolysis of inulin, glucose, and fructose[J]. Carbohyd Res, 1993, 24(2): 341-359.
-
[16]
[16] BECKE A D. Density-functional thermochemistry III. The role of exact exchange[J]. J Chem Phys, 1993, 98(7): 5648-5652.
-
[17]
[17] ZHANG X L, LI J, YANG W H, BLASIAK W. Formation mechanism of levoglucosan and formaldehyde during cellulose pyrolysis[J]. Energy Fuels, 2011, 25(8): 3739-3746.
-
[18]
[18] 黄金保, 刘朝, 魏顺安, 黄晓露, 李豪杰. 纤维素热解形成左旋葡聚糖机理的理论研究[J]. 燃料化学学报, 2011, 39(8): 590-594. (HUANG Jin-bao, LIU Chao, WEI Shun-an, HUANG Xiao-lu, LI Hao-jie. A theoretical study on the mechanism of levoglucosan formation in cellulose pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2011, 39(8): 590-594.)
-
[19]
[19] ZHANG X L, YANG W H, BLASIAK W. Thermal decomposition mechanism of levoglucosan during cellulose pyrolysis[J]. J Anal Appl Pyrol, 2012, 96: 110-119.
-
[20]
[20] 黄金保, 刘朝, 曾桂生, 谢宇, 童红, 李伟民. 左旋葡聚糖热解机理的密度泛函理论研究[J]. 燃料化学学报, 2012, 40(7): 807-815. (HUANG Jin-bao, LIU Chao, ZENG Gui-sheng, XIE Yu, TONG Hong, LI Wei-min. A density functional theory study on the mechanism of levoglucosan pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2012, 40(7): 807-815.)
-
[21]
[21] GONZALEZ C, SCHLEGEL H B. Reaction path following in mass-weighted internal coordinates[J]. J Chem Phys, 1990, 94(14): 5523-5527.
-
[22]
[22] SANDERS E B, GOLDSMITH A I, SEEMAN J I. A model that distinguishes the pyrolysis of D-glucose, D-fructose, and sucrose from that of cellulose. Application to the understanding of cigarette smoke formation[J]. J Anal Appl Pyrol, 2003, 66(1-2): 29-50.
-
[1]
-
-
-
[1]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[2]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[3]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[4]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[5]
Junqi Wang , Shuai Zhang , Jingjing Ma , Xiangjun Liu , Yayun Ma , Zhimin Fan , Jingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725
-
[6]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[7]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[8]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[9]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[10]
Zhengkun QIN , Zicong PAN , Hui TIAN , Wanyi ZHANG , Mingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429
-
[11]
Aiyi Xin , Jiawei Li , Xinyang Ran , Chuanjiang Fu , Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031
-
[12]
Zhenghua ZHAO , Qin ZHANG , Yufeng LIU , Zifa SHI , Jinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342
-
[13]
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
-
[14]
Weizhong LING , Xiangyun CHEN , Wenjing LIU , Yingkai HUANG , Yu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068
-
[15]
Di Yang , Jiayi Wei , Hong Zhai , Xin Wang , Taiming Sun , Haole Song , Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023
-
[16]
Xinting XIONG , Zhiqiang XIONG , Panlei XIAO , Xuliang NIE , Xiuying SONG , Xiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145
-
[17]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[18]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[19]
Min Gu , Huiwen Xiong , Liling Liu , Jilie Kong , Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120
-
[20]
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(415)
- HTML views(37)