Citation: CHEN Guan-yi, WANG Qin, YAN Bei-bei. Mobility and enrichment of trace elements in a coal-fired circulating fluidized bed boiler[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(9): 1050-1055. shu

Mobility and enrichment of trace elements in a coal-fired circulating fluidized bed boiler

  • Corresponding author: YAN Bei-bei, 
  • Received Date: 11 January 2013
    Available Online: 1 April 2013

    Fund Project: 国家重点基础研究发展规划(973计划, 2012CB214906) (973计划, 2012CB214906)国家科技支撑计划(2012BAA09B02)。 (2012BAA09B02)

  • Some hazardous trace elements in coal, bottom ash, fly ash and fine fly ash from a circulating fluidized bed (CFB) boiler in a power plant were examined. The distribution, enrichment and partitioning behavior of Be, Zn, Hg, V, Cr, Mn, Co, Ni, Cu, As, Se, Cd and Pb were analyzed. The results show that the distribution and enrichment characteristics of trace elements are greatly affected by the temperature of CFB. According to the relative enrichment factor (ER), Be, V, Co and Se trend toward fly ash; Zn and Mn show a tendency into bottom ash. Some volatile trace elements like Cd,Pb,Ni and Cu show low enrichment in both bottom ash and fly ash. The element of As is affected by calcium oxide, and its volatility is not obvious. Hg is more likely discharged with flue gas. Hg, As, Se, V, Cr, Mn, Co, Ni, Cu, Zn and Pb all have an enrichment tendency toward fine particles. On the basis of ER and behaviors of the 13 trace elements in CFB boiler, these elements are divided into 3 categories: A(ER<0.1), Hg mainly volatilizes into the atmosphere; B(0.1<ER≤0.85), As, Be, Ni, Cu, Se, Cd, Pb, Co and V are more easily volatilization; C(ER>0.85), Zn, Mn and Cr mostly stay in solid residues.
  • 加载中
    1. [1]

      [1] A study of hazardous air pollutant emission from electric utility steam generating units[J]. U.S. Government Printing Office: Washington, DC, 1998.

    2. [2]

      [2] SPEARS D A, MARTINEZ-TARRAZONA M R. Trace elements in combustion residues from a UK power station[J]. Fuel, 2004, 83(17/18): 2265-2270.

    3. [3]

      [3] HUANG W H, JIN B S, ZHONG Z P, XIAO R, TANG Z Y. Trace elements (Mn, Cr, Pb, Se、Zn, Cd and Hg) in emission from a pulverized coal boiler[J]. Fuel Process Technol, 2004, 86(1): 23-32.

    4. [4]

      [4] VEJAHATI F, XU Z, GUPTA R. Trace elements in coal: Associations with coal and minerals and their behavior during coal utilization-a review[J]. Fuel, 2010, 89(4): 904-911.

    5. [5]

      [5] 郑剑铭, 周劲松, 何胜, 骆仲泱.燃煤电厂汞排放对周边环境的影响[J].化工学报, 2009, 12(60): 3104-3111. (ZHENG Jian-ming, ZHOU Jin-song, HE Sheng, LUO Zhong-yang. Environmental impact of mercury emission from a coal-fired power plant[J]. CIESC Journal, 2009, 12(60): 3104-3111.)

    6. [6]

      [6] IZQUIERDO M, QUEROL X. Leaching behavior of elements from coal combustion fly ash: An overview[J]. Int J Coal Geol, 2012, 94: 54-66.

    7. [7]

      [7] ROY B, CHOO W L, BHATTACHARYA S. Prediction of distribution of trace elements under oxy-fuel combustion condition using Victorian brown coals[J], Fuel, 2012, in press.

    8. [8]

      [8] CLEMENS A H,DAMIANO L F,GONG D, MATHESON T W. Partitioning behavior of some toxic volatile elements during stoker and fluidized bed combustion of alkaline subbituminous coal[J]. Fuel, 1999, 78(12): 1379-1385.

    9. [9]

      [9] DAS A K, CHAKRABORTY R, GUARDIA M, CERVERA M L, GOSWAMI D. ICP-MS multielement determination in fly ash after microwave-assisted digestion of samples[J]. Talanta, 2001, 54(5): 975-981.

    10. [10]

      [10] 王珲, 宋蔷, 姚强, 陈昌和, 俞非漉. 微波消解与ICP-OES/ICP-MS测定飞灰中的多种元素[J]. 光谱实验室, 2012, 29(1): 525-528. (WANG Hui, SONG Qiang, YAO Qiang, CHEN Chang-he, YU Fei-lu. The determination of multiple elements in fly ash with Microwave digestion and ICP-OES/ICP-MS[J]. Chinese Journal of Spectroscopy Laboratory, 2012, 29(1): 525-528.)

    11. [11]

      [11] WANG J, NAKAZATO T, SAKANISHI K. Microwave digestion with HNO3/H2O2 mixture at high temperatures for determination of trace elements in coal by ICP-OES and ICP-MS[J]. Anal Chim Acta, 2004, 514(1): 115-124.

    12. [12]

      [12] 徐文东, 曾荣树, 叶大年, QUEROL X. 电厂煤燃烧后元素硒的分布及对环境的贡献[J].环境科学, 2005, 26(2): 64-68. (XU Wen-dong, ZEN Rong-shu, YE Da-nian, QUEROL X. Distributions and environmental impacts of Selenium in wastes of coal from a power plant[J]. Environmental Science, 2005, 26(2): 64-68.)

    13. [13]

      [13] QUEROL X, FERNHNDEZ-TURIEL J L, LOPEZ-SOLER A. Trace elements in coal and their behavior during combustion in a large power station[J]. Fuel, 1995, 74(3): 331-343.

    14. [14]

      [14] 任德贻, 赵峰华, 代世峰, 张军营, 雒昆利. 煤的微量元素地球化学[M]. 北京: 科学出版社, 2002: 82-83. (REN De-yi, ZHAO Feng-hua, DAI Shi-feng, ZHANG Jun-ying, LUO Kun-li. Trace elements geochemistry in coal[M]. Beijing: Science Press, 2002: 82-83.)

    15. [15]

      [15] MEIJ R. Trace element behavior in coal-fired power plants[J]. Fuel Process Technol, 1994, 39(1): 199-217.

    16. [16]

      [16] PEDERSEN J A, OTTOSEN L M, VILLUMSEN A. Electrodialytic removal of heavy metals from different fly ashes influence of heavy metal speciation in the ashes[J]. J Hazard Mater, 2003, 100(1): 65-78.

    17. [17]

      [17] BHANGARE R C, AJMAL P Y, SAHU S K, PANDIT G G, PURANIK V D. Distribution of trace elements in coal and combustion residues from five thermal power plants in India[J]. Int J Coal Geol, 2011, 86(4): 349-356.

    18. [18]

      [18] 岳勇, 姚强, 宋蔷, 李水清, 王珲. 不同煤燃烧源排放的PM10形态及重金属分布的对比研究[J]. 中国电机工程学报, 2007, 27(35): 33-38. (YUE Yong, YAO Qiang, SONG Qiang, LI Shui-qing, Wang Hui. Comparative study on PM10 microstructure and heavy metals distribution in emissions of coal combustion sources[J]. Proceedings of the CSEE, 2007, 27(35): 33-38.)

    19. [19]

      [19] 张娟, 陆继东, 余亮英, 王世杰, 张步庭. 煤中痕量元素在低温燃烧下的分布规律[J]. 工程热物理学报, 2003, 24(3): 531-533. (ZHANG Juan, LU Ji-dong, YU Liang-ying, WANG Shi-jie, ZHANG Bu-ting. Distribution of trace elements in coal combustion with low temperature[J]. Journal of Engineering Thermophysics, 2003, 24(3): 531-533.)

  • 加载中
    1. [1]

      Siyao Zhan Yajiao Wang Zhihuan Cai Ayizhada Maimaitiyumier Tilan Duan Xiangfeng Wei Qi Wang Jiehua Liu Xianghua Kong . Exploration of the Chemical Elements across Time and Space. University Chemistry, 2024, 39(9): 5-10. doi: 10.12461/PKU.DXHX202403071

    2. [2]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    3. [3]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    4. [4]

      Xiangli Wang Yuanfu Deng . Teaching Design of Elemental Chemistry from the Perspective of “Curriculum Ideology and Politics”: Taking Arsenic as an Example. University Chemistry, 2024, 39(2): 270-279. doi: 10.3866/PKU.DXHX202308092

    5. [5]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    6. [6]

      Yonghui Wang Weilin Chen Yangguang Li . Knowledge Construction of “Solubility of Inorganic Substances” in Elemental Chemistry Teaching. University Chemistry, 2024, 39(4): 261-267. doi: 10.3866/PKU.DXHX202312102

    7. [7]

      Huan Zhang Linyu Pu Wei Wang Yatang Dai Xu Huang . Curriculum Development and Blended Teaching Practice in the Graduate Course on Elemental Inorganic Chemistry. University Chemistry, 2024, 39(6): 166-173. doi: 10.3866/PKU.DXHX202402010

    8. [8]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    9. [9]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    10. [10]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    11. [11]

      Yan Li Fei Ding Jing Wang Jing Nan Yijun Li Xiaohang Qiu . Give a Man a Fish, and Teach a Man to Fish: Self-Designed Instrumental Analysis Experiments and Integration of Ideological and Political Elements. University Chemistry, 2024, 39(2): 208-213. doi: 10.3866/PKU.DXHX202310097

    12. [12]

      Yajun Jian Quanguo Zhai Quan Gu Shengli Gao . Reconstruction and Practice of the Teaching Content of “Carbon Group Elements” in Inorganic Chemistry to Reflect Comprehensive Education Function. University Chemistry, 2024, 39(11): 96-107. doi: 10.12461/PKU.DXHX202403006

    13. [13]

      Yanhui Sun Junmin Nan Guozheng Ma Xiaoxi Zuo Guoliang Li Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023

    14. [14]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    15. [15]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    16. [16]

      Shanying Chen Kangning Huo Ke Qi Jingyi Li Shuxin Li Yunchao Li . A Novel Colloid Electrophoresis Experiment with the Characteristics of Resource Recycling and Inquiry-Driven Experimental Design. University Chemistry, 2024, 39(5): 274-286. doi: 10.3866/PKU.DXHX202311067

    17. [17]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    18. [18]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

Metrics
  • PDF Downloads(0)
  • Abstract views(309)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return