Citation: LIU Shu-yuan, WANG Yin, WU Rong-cheng, ZENG Xi, XU Guang-wen. Research on coal tar catalytic cracking over hot in-situ chars[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(9): 1041-1049. shu

Research on coal tar catalytic cracking over hot in-situ chars

  • Corresponding author: WANG Yin,  XU Guang-wen, 
  • Received Date: 24 December 2012
    Available Online: 28 February 2013

    Fund Project: 国家自然科学基金(51176197) (51176197)国家科技支撑项目(2012BAC03B05, 2010BAC66B01)。 (2012BAC03B05, 2010BAC66B01)

  • A comparison of coal tar catalytic cracking over hot char from in-situ coal pyrolysis and cooling char was investigated. The results show that the in-situ char has a higher capability of removing tar than the cooling char under the same reaction conditions. The tar content in the product gas is reduced to as low as 100 mg/m3 when the temperature of the in-situ char bed and the gas residence time in the bed are 1 100 ℃ and 1.2 s, respectively. BET analysis shows that the in-situ char has larger specific surface area and more micro pores than the cooling char, while the uniformity of the carbon crystallite structure in the cooling char increases, causing the decrease of the char's catalytic activity for tar removal. With the increase of gas residence time in the char bed or of cracking temperature, the tar content in the product gas decreases greatly, while the difference of catalytic activity for tar cracking between in-situ char and cooling char also decreases. The activity of the spent char is decreased significantly. However, the activity of the spent char can be basically recovered when it is partially gasified with steam.
  • 加载中
    1. [1]

      [1] BRAGE C, YU Q Z, CHEN G X, SJOSTROM K. Tar evolution profiles obtained from gasification of biomass and coal[J]. Biomass Bioenergy, 2000, 18(1): 87-91.

    2. [2]

      [2] MILNE T A, EVANS R J. Biomass gasifier "tars": Their nature, formation, and conversion[R]. Colorado: Nrel, 1998.

    3. [3]

      [3] HAN J, KIM H. The reduction and control technology of tar during biomass gasification/pyrolysis: An overview[J]. Renew Sust Energ Rev, 2008, 12(2): 397-416.

    4. [4]

      [4] BAKER E G, MUDGE L K, BROWN M D. Steam gasification of biomass with nickel secondary catalysts[J]. Ind Eng Chem Res, 1987, 26(7): 1335-1339.

    5. [5]

      [5] KINOSHITA C M, WANG Y, ZHOU J. Effect of reformer conditions on catalytic reforming of biomass-gasification tars[J]. Ind Eng Chem Res, 1995, 34(9): 2949-2954.

    6. [6]

      [6] ARAUZO J, RADLEIN D, PISKORZ J, SCOTT D S. Catalytic pyrogasification of biomass. Evaluation of modified nickel catalysts[J]. Ind Eng Chem Res, 1997, 36(1): 67-75.

    7. [7]

      [7] MIYAZAWA T, KIMURA T, NISHIKAWA J, KADO S, KUNIMORI K, TOMISHIGE K. Catalytic performance of supported Ni catalysts in partial oxidation and steam reforming of tar derived from the pyrolysis of wood biomass[J]. Catal Today, 2006, 115(1-4): 254-262.

    8. [8]

      [8] DELGADO J, AZNAR M P, CORELLA J. Calcined dolomite, magnesite, and calcite for cleaning hot gas from a fluidized bed biomass gasifier with steam: Life and usefulness[J]. Ind Eng Chem Res, 1996, 35(10): 3637-3643.

    9. [9]

      [9] DELGADO J, AZNAR M P, CORELLA. Biomass gasification with steam in fluidized bed: Effectiveness of CaO, MgO, and CaO-MgO for hot raw gas cleaning[J]. Ind Eng Chem Res, 1997, 36(5): 1535-1543.

    10. [10]

      [10] HOSOKAI S, NORINAGA K, KIMURA T, NAKANO M, LI C Z, HAYASHI J. Reforming of volatiles from the biomass pyrolysis over charcoal in a sequence of coke deposition and steam gasification of coke[J]. Energy Fuels, 2011, 25(11): 5387-5393.

    11. [11]

      [11] CHEMBUKULAM S K, DANDGE A S, KOVLLU RAO N L, SESHAGIRI K, VAIDYESWARAN R. Smokeless fuel from carbonized sawdust[J]. Ind Eng Chem Prod Res Dev, 1981, 20(4): 714-719.

    12. [12]

      [12] HOSOKAI S, HAYASHI J, SHIAMADA T, KOBOYASHI Y, KURAMOTO K, LI C Z, CHIBA T. Spontaneous generation of tar decomposition promoter in a biomass steam reformer[J]. Ind Eng Chem Res, 2005, 83(9): 1093-1102.

    13. [13]

      [13] BRANDT P, LARSEN E, HENRIKSEN U. High tar reduction in a two-stage gasifier[J]. Energy Fuels, 2000, 41(4): 816-819.

    14. [14]

      [14] HOSOKAI S,KISHIMOTO K,NORINAGA K, LI C Z, HAYASHI J. Characteristics of gas-phase partial oxidation of nascent tar from the rapid pyrolysis of cedar sawdust at 700-800℃[J]. Energy Fuels, 2010, 24(5): 2900-2909.

    15. [15]

      [15] ABU E-R Z, BRAMER E A, BREM G. Experimental comparison of biomass chars with other catalysts for tar reduction[J]. Fuel, 2008, 87(10-11): 2243-2252.

    16. [16]

      [16] HAYASHI J I, IWATSUKI M, MORISHITA K, TSUTSUMI A, LI C Z, TADATOSHI C. Roles of inherent metallic species in secondary reactions of tar and char during rapid pyrolysis of brown coals in a drop-tube reactor[J]. Fuel, 2002, 81(5): 1977-1987.

    17. [17]

      [17] ZENG X, WANG Y, YU J, WU S S, ZHONG M, XU S P, XU G W. Coal pyrolysis in a fluidized bed for adapting to a two-stage gasification process[J]. Energy Fuels, 2011, 25(3): 1092-1098.

    18. [18]

      [18] ZENG X, WANG Y, YU J, WU S S, ZHONG M, XU S P, XU G W. Gas upgrading in a downdraft fixed-bed reactor downstream of a fluidized-bed coal pyrolyzer[J]. Energy Fuels, 2011, 25(11): 5242-5249.

    19. [19]

      [19] HENRIKSEN U, AHRENFELDT J, JESEN T K, GOBEL B, BENTZEN J D, HINDSGAUL C, SORENSEN L H. The design, construction and operation of a 75 kW two-stage gasifier[J]. Energy, 2006, 31(10-11): 1542-1553.

    20. [20]

      [20] GILBERT P, RYU C, SHARIFI V, SWITHENBANK J. Tar reduction in pyrolysis vapors from biomass over a hot char bed[J]. Bioresource technology, 2009, 100(23): 6045-6051.

    21. [21]

      [21] SENNECA O, SALATINO P, MASI S. Microstructure changes and loss of gasification reactivity of char upon heat treatment[J]. Fuel, 1998, 77(13): 1483-1493.

    22. [22]

      [22] FENG B, BHATIA S K, BARRY J C. Structural ordering of coal char during heat treatment and its impact on reactivity[J]. Carbon, 2002, 40(4): 481-496.

    23. [23]

      [23] SHARMA A, KADOOKA H, KYOTANI T, TOMITA A. Effect of micro structural changes on gasification reactivity of coal chars during low temperature gasification[J]. Energy Fuels, 2002, 16(1): 54-61.

    24. [24]

      [24] YIP K, WU H, ZHANG D. Effect of inherent moisture in collie coal during pyrolysis due to in-situ steam gasification[J]. Energy Fuels, 2007, 21(5): 2883-2891.

    25. [25]

      [25] SENNECA O, SALATINO P, MASI S. Heat treatment-induced loss of combustion reactivity of a coal char: The effect of exposure to oxygen[J]. Exp Therm Fluid Sci, 2004, 28(7): 735-741.

    26. [26]

      [26] SHENG C D. Char structure characterized by Raman spectroscopy and its correlations with combustion reactivity[J]. Fuel, 2007, 86(15): 2316-2324.

  • 加载中
    1. [1]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-0. doi: 10.3866/PKU.WHXB202308052

    2. [2]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    3. [3]

      Haiyu ZhuZhuoqun WenWen XiongXingzhan WeiZhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078

    4. [4]

      Lianghong Ye Junqing Ni Zhongyi Yan Zhanming Zhang Can Zhu Mo Sun . Chemical Fuel-Driven Non-Equilibrium Color Change. University Chemistry, 2025, 40(3): 349-354. doi: 10.12461/PKU.DXHX202406109

    5. [5]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    6. [6]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    7. [7]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    8. [8]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    9. [9]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    12. [12]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    13. [13]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    14. [14]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    15. [15]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    16. [16]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    17. [17]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    18. [18]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(0)
  • Abstract views(632)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return