Citation:
LIU Shu-yuan, WANG Yin, WU Rong-cheng, ZENG Xi, XU Guang-wen. Research on coal tar catalytic cracking over hot in-situ chars[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(9): 1041-1049.
-
A comparison of coal tar catalytic cracking over hot char from in-situ coal pyrolysis and cooling char was investigated. The results show that the in-situ char has a higher capability of removing tar than the cooling char under the same reaction conditions. The tar content in the product gas is reduced to as low as 100 mg/m3 when the temperature of the in-situ char bed and the gas residence time in the bed are 1 100 ℃ and 1.2 s, respectively. BET analysis shows that the in-situ char has larger specific surface area and more micro pores than the cooling char, while the uniformity of the carbon crystallite structure in the cooling char increases, causing the decrease of the char's catalytic activity for tar removal. With the increase of gas residence time in the char bed or of cracking temperature, the tar content in the product gas decreases greatly, while the difference of catalytic activity for tar cracking between in-situ char and cooling char also decreases. The activity of the spent char is decreased significantly. However, the activity of the spent char can be basically recovered when it is partially gasified with steam.
-
Keywords:
- hot char,
- cold char,
- tar,
- catalytic cracking
-
-
-
[1]
[1] BRAGE C, YU Q Z, CHEN G X, SJOSTROM K. Tar evolution profiles obtained from gasification of biomass and coal[J]. Biomass Bioenergy, 2000, 18(1): 87-91.
-
[2]
[2] MILNE T A, EVANS R J. Biomass gasifier "tars": Their nature, formation, and conversion[R]. Colorado: Nrel, 1998.
-
[3]
[3] HAN J, KIM H. The reduction and control technology of tar during biomass gasification/pyrolysis: An overview[J]. Renew Sust Energ Rev, 2008, 12(2): 397-416.
-
[4]
[4] BAKER E G, MUDGE L K, BROWN M D. Steam gasification of biomass with nickel secondary catalysts[J]. Ind Eng Chem Res, 1987, 26(7): 1335-1339.
-
[5]
[5] KINOSHITA C M, WANG Y, ZHOU J. Effect of reformer conditions on catalytic reforming of biomass-gasification tars[J]. Ind Eng Chem Res, 1995, 34(9): 2949-2954.
-
[6]
[6] ARAUZO J, RADLEIN D, PISKORZ J, SCOTT D S. Catalytic pyrogasification of biomass. Evaluation of modified nickel catalysts[J]. Ind Eng Chem Res, 1997, 36(1): 67-75.
-
[7]
[7] MIYAZAWA T, KIMURA T, NISHIKAWA J, KADO S, KUNIMORI K, TOMISHIGE K. Catalytic performance of supported Ni catalysts in partial oxidation and steam reforming of tar derived from the pyrolysis of wood biomass[J]. Catal Today, 2006, 115(1-4): 254-262.
-
[8]
[8] DELGADO J, AZNAR M P, CORELLA J. Calcined dolomite, magnesite, and calcite for cleaning hot gas from a fluidized bed biomass gasifier with steam: Life and usefulness[J]. Ind Eng Chem Res, 1996, 35(10): 3637-3643.
-
[9]
[9] DELGADO J, AZNAR M P, CORELLA. Biomass gasification with steam in fluidized bed: Effectiveness of CaO, MgO, and CaO-MgO for hot raw gas cleaning[J]. Ind Eng Chem Res, 1997, 36(5): 1535-1543.
-
[10]
[10] HOSOKAI S, NORINAGA K, KIMURA T, NAKANO M, LI C Z, HAYASHI J. Reforming of volatiles from the biomass pyrolysis over charcoal in a sequence of coke deposition and steam gasification of coke[J]. Energy Fuels, 2011, 25(11): 5387-5393.
-
[11]
[11] CHEMBUKULAM S K, DANDGE A S, KOVLLU RAO N L, SESHAGIRI K, VAIDYESWARAN R. Smokeless fuel from carbonized sawdust[J]. Ind Eng Chem Prod Res Dev, 1981, 20(4): 714-719.
-
[12]
[12] HOSOKAI S, HAYASHI J, SHIAMADA T, KOBOYASHI Y, KURAMOTO K, LI C Z, CHIBA T. Spontaneous generation of tar decomposition promoter in a biomass steam reformer[J]. Ind Eng Chem Res, 2005, 83(9): 1093-1102.
-
[13]
[13] BRANDT P, LARSEN E, HENRIKSEN U. High tar reduction in a two-stage gasifier[J]. Energy Fuels, 2000, 41(4): 816-819.
-
[14]
[14] HOSOKAI S,KISHIMOTO K,NORINAGA K, LI C Z, HAYASHI J. Characteristics of gas-phase partial oxidation of nascent tar from the rapid pyrolysis of cedar sawdust at 700-800℃[J]. Energy Fuels, 2010, 24(5): 2900-2909.
-
[15]
[15] ABU E-R Z, BRAMER E A, BREM G. Experimental comparison of biomass chars with other catalysts for tar reduction[J]. Fuel, 2008, 87(10-11): 2243-2252.
-
[16]
[16] HAYASHI J I, IWATSUKI M, MORISHITA K, TSUTSUMI A, LI C Z, TADATOSHI C. Roles of inherent metallic species in secondary reactions of tar and char during rapid pyrolysis of brown coals in a drop-tube reactor[J]. Fuel, 2002, 81(5): 1977-1987.
-
[17]
[17] ZENG X, WANG Y, YU J, WU S S, ZHONG M, XU S P, XU G W. Coal pyrolysis in a fluidized bed for adapting to a two-stage gasification process[J]. Energy Fuels, 2011, 25(3): 1092-1098.
-
[18]
[18] ZENG X, WANG Y, YU J, WU S S, ZHONG M, XU S P, XU G W. Gas upgrading in a downdraft fixed-bed reactor downstream of a fluidized-bed coal pyrolyzer[J]. Energy Fuels, 2011, 25(11): 5242-5249.
-
[19]
[19] HENRIKSEN U, AHRENFELDT J, JESEN T K, GOBEL B, BENTZEN J D, HINDSGAUL C, SORENSEN L H. The design, construction and operation of a 75 kW two-stage gasifier[J]. Energy, 2006, 31(10-11): 1542-1553.
-
[20]
[20] GILBERT P, RYU C, SHARIFI V, SWITHENBANK J. Tar reduction in pyrolysis vapors from biomass over a hot char bed[J]. Bioresource technology, 2009, 100(23): 6045-6051.
-
[21]
[21] SENNECA O, SALATINO P, MASI S. Microstructure changes and loss of gasification reactivity of char upon heat treatment[J]. Fuel, 1998, 77(13): 1483-1493.
-
[22]
[22] FENG B, BHATIA S K, BARRY J C. Structural ordering of coal char during heat treatment and its impact on reactivity[J]. Carbon, 2002, 40(4): 481-496.
-
[23]
[23] SHARMA A, KADOOKA H, KYOTANI T, TOMITA A. Effect of micro structural changes on gasification reactivity of coal chars during low temperature gasification[J]. Energy Fuels, 2002, 16(1): 54-61.
-
[24]
[24] YIP K, WU H, ZHANG D. Effect of inherent moisture in collie coal during pyrolysis due to in-situ steam gasification[J]. Energy Fuels, 2007, 21(5): 2883-2891.
-
[25]
[25] SENNECA O, SALATINO P, MASI S. Heat treatment-induced loss of combustion reactivity of a coal char: The effect of exposure to oxygen[J]. Exp Therm Fluid Sci, 2004, 28(7): 735-741.
-
[26]
[26] SHENG C D. Char structure characterized by Raman spectroscopy and its correlations with combustion reactivity[J]. Fuel, 2007, 86(15): 2316-2324.
-
[1]
-
-
-
[1]
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
-
[2]
Haiyu Zhu , Zhuoqun Wen , Wen Xiong , Xingzhan Wei , Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078
-
[3]
Ping Song , Nan Zhang , Jie Wang , Rui Yan , Zhiqiang Wang , Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087
-
[4]
Lianghong Ye , Junqing Ni , Zhongyi Yan , Zhanming Zhang , Can Zhu , Mo Sun . Chemical Fuel-Driven Non-Equilibrium Color Change. University Chemistry, 2025, 40(3): 349-354. doi: 10.12461/PKU.DXHX202406109
-
[5]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . 基于激发态手性铜催化的烯烃E→Z异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[6]
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
-
[7]
Qingjun PAN , Zhongliang GONG , Yuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365
-
[8]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[9]
Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073
-
[10]
Yanglin Jiang , Mingqing Chen , Min Liang , Yige Yao , Yan Zhang , Peng Wang , Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027
-
[11]
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
-
[12]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[13]
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071
-
[14]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[15]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[16]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
-
[17]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[18]
Jiatong Hu , Qiyi Wang , Ruiwen Tang , Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015
-
[19]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[20]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(609)
- HTML views(40)