Citation: MA Xian-gang, GE Qing-jie, XU Heng-yong. Direct synthesis of liquefied petroleum gas from syngas over hybrid catalyst[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(8): 1010-1014. shu

Direct synthesis of liquefied petroleum gas from syngas over hybrid catalyst

  • Corresponding author: GE Qing-jie, 
  • Received Date: 1 June 2013
    Available Online: 23 June 2013

    Fund Project: 国家科技支撑计划(2011BAD22B06). (2011BAD22B06)

  • Direct synthesis of liquefied petroleum gas (LPG) from syngas could be realized over a hybrid catalyst consisting of methanol synthesis catalyst and zeolite. In this work, SAPO-5 was chosen consciously for LPG synthesis, because its pore size (0.73 nm×0.73 nm) is similar to that of Y zeolite. As expected, the corresponding hybrid catalyst of SAPO-5 exhibits high selectivity (73.0%) to LPG, which confirms the previous deduction that large pore size of zeolite was beneficial to LPG synthesis. In addition, as one step process of syngas to LPG, the formation of hydrocarbons from methanol or dimethyl ether follows the hydrocarbon pool mechanism.
  • 加载中
    1. [1]

      [1] ASAMI K, ZHANG Q, LI X, ASAOKA S, FUJIMOTO K. Selective synthesis of LPG from synthesis gas[J]. Stud Surf Sci Catal, 2004, 147: 427-432.

    2. [2]

      [2] ZHANG Q, LI X, ASAMI K, ASAOKA S, FUJIMOTO K. A highly stable and efficient catalyst for direct synthesis of LPG from syngas[J]. Catal Lett, 2005, 102(1/2): 51-55.

    3. [3]

      [3] ZHANG Q, LI X, ASAMI K, ASAOKA S, FUJIMOTO K. Direct synthesis of LPG fuel from syngas with the hybrid catalyst based on modified Pd/SiO2 and zeolite[J]. Catal Today, 2005, 104(1): 30-36.

    4. [4]

      [4] GE Q, LI X, FUJIMOTO K. Application of modified beta zeolite in the direct synthesis of LPG from syngas[J]. Stud Surf Sci Catal, 2007, 170: 1260-1266.

    5. [5]

      [5] GE Q, LI X, KANEKO H, FUJIMOTO K. Direct synthesis of LPG from synthesis gas over Pd-Zn-Cr/Pd-beta hybrid catalysts[J]. J Mol Catal A: Chem, 2007, 278(1/2): 215-219.

    6. [6]

      [6] GE Q, LIAN Y, YUAN X, LI X, FUJIMOTO K. High performance Cu-ZnO/Pd-beta catalysts for syngas to LPG[J]. Catal Commun, 2008, 9(2): 256-261.

    7. [7]

      [7] 吕永兴, 王铁军, 李宇萍, 吴创之, 马隆龙. 生物质合成气一步法合成LPG的实验研究[J]. 燃料化学学报, 2008, 36(2): 246-249. (Lv Yong-xing, Wang Tie-jun, Li Yu-ping, Wu Chuang-zhi, Ma Long-long. Direct synthesis of liquefied petroleum gas from biomass synthesis gas[J]. Journal of Fuel Chemistry and Technology, 2008, 36(2): 246-249.)

    8. [8]

      [8] 马现刚, 葛庆杰, 方传艳, 马俊国, 徐恒泳. 合成气制液化石油气复合催化剂的性能[J]. 催化学报, 2010, 31(12): 1501-1506. (Ma Xian-gang, Ge Qing-jie, Fang Chuan-yan, Ma Jun-guo, Xu Heng-yong. Hybrid catalysts for liquefied petroleum gas synthesis from syngas[J]. Chinese Journal of Catalysis, 2010, 31(12): 1501-1506.)

    9. [9]

      [9] MA X, GE Q, FANG C, MA J, XU H. Direct synthesis of LPG from syngas derived from air-POM[J]. Fuel, 2011, 90(5): 2051-2054.

    10. [10]

      [10] WANG L, GUO C, YAN S, HUANG X, LI Q. High-silica SAPO-5 with preferred orientation: Synthesis, characterization and catalytic applications[J]. Microporous Mesoporous Mat, 2003, 64(1/3): 63-68.

    11. [11]

      [11] ROWNAGHI A A, REZAEI F, HEDLUND J. Yield of gasoline-range hydrocarbons as a function of uniform ZSM-5 crystal size[J]. Catal Commun, 2011, 14(1): 37-41.

    12. [12]

      [12] NI Y, SUN A, WU X, HAI G, HU J, LI T, LI G. Preparation of hierarchical mesoporous Zn/HZSM-5 catalyst and its application in MTG reaction[J]. J Nat Gas Chem, 2011, 20(3): 237-242.

    13. [13]

      [13] STOCKER M. Methanol-to-hydrocarbons: catalytic materials and their behavior[J]. Microporous Mesoporous Mat, 1999, 29(1/2): 3-48.

    14. [14]

      [14] SVELLE S, OLSBYE U, JOENSEN F, BJØRGEN M. Conversion of methanol to alkenes over medium- and large-pore acidic zeolites: Steric manipulation of the reaction intermediates governs the ethene/propene product selectivity[J]. J Phys Chem C, 2007, 111(49): 17981-17984.

    15. [15]

      [15] OLSBYE U, SVELLE S, BJØRGEN M, BEATO P, JANSSENS T V W, JOENSEN F, BORDIGA S, LILLERUD K P. Conversion of methanol to hydrocarbons: How zeolite cavity and pore size controls product selectivity[J]. Angew Chem Int Edit, 2012, 51(24): 5810-5831.

    16. [16]

      [16] SONG W, FU H, HAW J F. Supramolecular origins of product selectivity for methanol-to-olefin catalysis on HSAPO-34[J]. J Am Chem Soc, 2001, 123(20): 4749-4754.

    17. [17]

      [17] SVELLE S, JOENSEN F, NERLOV J, OLSBYE U, LILLERUD K P, KOLBOE S, BJØRGEN M. Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: Ethene formation is mechanistically separated from the formation of higher alkenes[J]. J Am Chem Soc, 2006, 128(46): 14770-14771.

    18. [18]

      [18] BJØRGEN M, SVELLE S, JOENSEN F, NERLOV J, KOLBOE S, BONINO F, PALUMBO L, BORDIGA S, OLSBYE U. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species[J]. J Catal, 2007, 249(2): 195-207.

    19. [19]

      [19] BJØRGEN M, JOENSEN F, LILLERUD K P, OLSBYE U, SVELLE S. The mechanisms of ethene and propene formation from methanol over high silica H-ZSM-5 and H-beta[J]. Catal Today, 2009, 142(1/2): 90-97.

  • 加载中
    1. [1]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    2. [2]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    3. [3]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    4. [4]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    5. [5]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    6. [6]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    7. [7]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    8. [8]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    9. [9]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    10. [10]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    11. [11]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    14. [14]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    15. [15]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    16. [16]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    19. [19]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    20. [20]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

Metrics
  • PDF Downloads(0)
  • Abstract views(404)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return