Citation: XI Hong-juan, LI Guang-jun, QING Shao-jun, HOU Xiao-ning, ZHAO Jin-zhen, LIU Ya-jie, GAO Zhi-xian. Cu-Al spinel catalyst prepared by solid phase method for methanol steam reforming[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(8): 998-1002. shu

Cu-Al spinel catalyst prepared by solid phase method for methanol steam reforming

  • Corresponding author: GAO Zhi-xian, 
  • Received Date: 31 May 2013
    Available Online: 23 June 2013

  • A series of catalysts were prepared by calcination of copper(II) hydroxide and pseudo boehmite with a Cu/Al molar ratio of 1/2. When the calcination temperature was raised from 500 ℃ to 900 ℃, the main component of the catalysts varied from CuO to CuAl2O4, and the catalyst surface area declined from 75.0 to 16.6 m2/g. The catalysts, with CuAl2O4 as main component and high surface area, showed excellent catalytic performance in methanol steam reforming reaction (MSR). In addition, the catalyst, with CuAl2O4 as main component, had the copper releasing as well as sintering, hence the catalytic activity increased first and then decreased. The preferred catalyst was calcined at 800 ℃ and had better catalytic performance than commercial Cu-Zn-Al. Meanwhile, this catalyst can be regenerated after MSR. When the catalyst was not pre-reduced, the methanol conversion was 55.2% at the beginning, and then increased to 79.3% at 288.3 h, and decreased to 63.9% at 1 000.5 h, when reaction conditions were the molar ratio of alcohol to water 1, 240 ℃, 1.0×106 Pa, WHSV of 1.75 h-1.
  • 加载中
    1. [1]

      [1] 洪学伦. 甲醇重整气为燃料的质子交换膜燃料电池[J]. 化工学报, 2007, 58(6): 1564-1567. (HONG Xue-lun. PEMFC system fed with methanol reformate gas[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(6): 1564-1567.)

    2. [2]

      [2] YAHIRO H, NAKAYA K, YAMAMOTA K, SAILI K, YAMAURA H. Effect of calcination temperature on the catalytic activity of copper supported on γ-alumina for the water-gas-shift reaction[J]. Catal Commun, 2006, 7(4): 228-231.

    3. [3]

      [3] BEHRENS M, ARMBRVSTER M. Methanol steam reforming[M]. Catalysis for Alternative Energy Generation, Springer, 2012: 175-235.

    4. [4]

      [4] AGARAS H, CERRELLA G, LABORDE M A. Copper catalysts for the steam reforming of methanol: Analysis of the preparation variables[J]. Appl Catal, 1988, 45(1): 53-60.

    5. [5]

      [5] FUKUNAGA T, RYUMON N, ICHIKUNI N, SHIMAZU S. Characterization of Cu Mn-spinel catalyst for methanol steam reforming[J]. Catal Commun, 2009, 10(14): 1800-1803.

    6. [6]

      [6] KAMEOKA S, TANABE T, TSAI A P. Spinel CuFe2O4: A precursor for copper catalyst with high thermal stability and activity[J]. Catal Lett, 2005, 100(1): 89-93.

    7. [7]

      [7] 李光俊, 郗宏娟, 张素红, 谷传涛, 庆绍军, 侯晓宁, 高志贤. 尖晶石CuM2O4(M= Al, Fe, Cr)催化甲醇重整反应的特性[J]. 燃料化学学报, 2012, 40(12): 1466-1471. (LI Guang-jun, XI Hong-juan, ZHANG Su-hong, GU Chuan-tao, QING Shao-jun, HOU Xiao-ning, GAO Zhi-xian. Catalytic characteristics of spinel CuM2O4 (M=Al, Fe, Cr) for the steam reforming of methanol[J]. Journal of Fuel Chemistry and Technology, 2012, 40(12): 1466-1471.)

    8. [8]

      [8] 隋小涛, 于乔, 姜妍彦, 唐乃岭, 谷秀梅, 宁桂玲. 纳米CuAl2O4粉体的合成工艺条件及其表征[J]. 传感技术学报, 2006, 19(5): 2351-2353. (SUI Xiao-tao, YU Qiao, JIANG Yan-yan, TANG Nai-ling, GU Xiu-mei, NING Gui-ling. Characterization and condition of synthesizing CuAl2O4 nanoparticles[J]. Chinese Journal of Sendors and Actuators, 2006, 19(5): 2351-2353.)

    9. [9]

      [9] SHLONO T, SHIONO K, MIYIMOTO K. Synthesis and characterization of MgAl2O4 spinel precursor from a heterogeneous alkoxide solution containing fine MgO powder[J]. J Am Ceram Soc, 2000, 83(1): 235-237.

    10. [10]

      [10] WRZYSZCZ J, ZAWADZKI M, TRAWCZYNSKI J, GRABOWSKA H, MITAA W. Some catalytic properties of hydrothermally synthesised zinc aluminate spinel[J]. Appl Catal A: Gen, 2001, 210(1/2): 263-269.

    11. [11]

      [11] 骆凡, 吴季怀, 林建明, 胡东红, 杨媛媛, 张云霞. 纳米晶 CuAl2O4 的合成, 表征及光催化性能研究[J]. 中国科技论文在线, 2008, 3(4): 263-267. (LUO Fan, WU Ji-huai, LIN Jian-ming, HU Dong-hong, YANG Yuan-yuan, ZHANG Yun-xia. Synthesis, characterization and photocatalytic properties of nanocrystalline CuAl2O4[J]. Sciencepaper online, 2008, 3(4): 263-267.)

    12. [12]

      [12] 庆绍军, 侯晓宁, 郗宏娟, 邱诗铭, 高志贤. Cu-SiO2氧化还原性能的研究. 第十三届全国青年催化学术会议论文集, 2011: 290. (QING Shao-jun, HOU Xiao-ning, XI Hong-juan, QIU shi-ming, GAO zhi-xian. Redox performance of Cu/SiO2. The 13th national youth catalytic academic conference proceedings, 2011: 290.)

  • 加载中
    1. [1]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    2. [2]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

    3. [3]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    4. [4]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    5. [5]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    6. [6]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    7. [7]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    8. [8]

      Wencheng FangDong LiuYing ZhangHao FengQiang Li . Improved Photoelectrochemical Performance by Polyoxometalate-Modified CuBi2O4/Mg-CuBi2O4 Homojunction Photocathode. Acta Physico-Chimica Sinica, 2024, 40(2): 2304006-0. doi: 10.3866/PKU.WHXB202304006

    9. [9]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    10. [10]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    11. [11]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    12. [12]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    13. [13]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    14. [14]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    15. [15]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    16. [16]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    17. [17]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    18. [18]

      Sikai Wu Xuefei Wang Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457

    19. [19]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    20. [20]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

Metrics
  • PDF Downloads(0)
  • Abstract views(928)
  • HTML views(163)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return