Citation: YIN Chang-long, ZHAI Xi-ping, ZHAO Lei-yan, LIU Chen-guang. Mechanism of hydrodesulfurization of dibenzothiophenes on unsupported NiMoW catalyst[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(8): 991-997. shu

Mechanism of hydrodesulfurization of dibenzothiophenes on unsupported NiMoW catalyst

  • Corresponding author: YIN Chang-long, 
  • Received Date: 19 March 2013
    Available Online: 20 May 2013

    Fund Project: 国家重点基础研究发展规划(973计划, 2010CB226905). (973计划, 2010CB226905)

  • Hydrodesulfurization (HDS) of dibenzothiophene (DBT), 4-methyldibenzothiophene (4-MDBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) on unsupported NiMoW catalyst was studied. Moreover, mechanisms and reaction networks were revealed on the basis of GC and GC-MS analyses of the reaction products. The result shows that, the HDS rate of dibenzothiophenes is in the order of 4,6-DMDBT≈4-MDBT<DBT for the spatial restraining effect of the methyl group. Unsupported NiMoW catalyst has high hydrogenation activity in aromatics saturation, it favours the hydrogenation of alkyl-substituted aromatic ring, weakens the spatial restraining effect, leads to the effectively removing of alkyl-substituted dibenzothiophenes. The hydrodesulfurization products of DBT could be hydrogenated further and its distribution is similar to the hydrogenation products of biphenyl(BP). The hydrogenation route of the hydrodesulfurization of 4-MDBT have two reaction pathways, the electron donor induction of the methyl group could promote the hydrogenation of the adjacent phenyl. On the lewis acid sites of catalyst, part of 4-MDBT and 4,6-DMDBT transformed into DBT through the demethylation reaction in their hydrodesulfurization process.
  • 加载中
    1. [1]

      [1] LAUDAUM M V. Deep hydrotreating of middle distillates from crude and shale oils[J]. Catal Today, 1997, 36(4): 393-429.

    2. [2]

      [2] 徐永强, 赵瑞玉, 商红岩, 赵会吉, 刘晨光. 二苯并噻吩和4-甲基二苯并噻吩在Mo和CoMo/γ-Al2O3催化剂上加氢脱硫的反应机理[J]. 石油学报(石油加工), 2003, 19(5): 14-21. (XU Yong-qiang, ZHAO Rui-yu, SHANG Hong-yan, ZHAO Hui-ji, LIU Chen-guang. Mechanism of hydrodesulfurization of dibenzothiophene and 4-methyldibenzothiophene on Mo/γ-Al2O3 and CoMo/γ-Al2O3[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2003, 19(5): 14-21.)

    3. [3]

      [3] 徐永强, 商红岩, 刘晨光. 压力和温度对4-甲基二苯并噻吩和二苯并噻吩加氢脱硫反应的影响[J]. 燃料化学学报, 2004, 32(2): 200-205. (XU Yong-qiang, SHANG Hong-yan, LIU Chen-guang. Effects of reaction pressures and teamperature on the hydrodesulfurization of 4-methyldibenzothiophene and dibenzothiophene[J]. Journal of Fuel Chemistry and Technology, 2004, 32(2): 200-205.)

    4. [4]

      [4] 左东华, 谢玉萍, 聂红, 石亚华, 李灿. 4,6-二甲基二苯并噻吩加氢脱硫反应机理的研究I.NiW体系催化剂的催化行为[J]. 催化学报, 2002, 23(3): 271-275. (ZUO Dong-hua, XIE Yu-ping, NIE Hong, SHI Ya-hua, LI Can. Study on hydrodesulfurization mechanism of 4,6-dimethyldibenzothiophene I. Catalytic behavior of NiW-Based catalyst[J]. Chinese Journal of Catalysis, 2002, 23(3): 271-275.)

    5. [5]

      [5] BATAILLEA F, LEMBERTON J L, MICHAUDA P, PEROTA G, VRINATB M, LEMAIREC M, SCHULZC E, BREYSSED M, KASZTELANE S. Alkyldibenzothiophenes hydrodesulfurization-promoter effect, reactivity, and reaction mechanism[J]. J Catal, 2000, 191(9): 409-422.

    6. [6]

      [6] CHIANELLI R R, BERHAULT G, RAYBAUD P, KASZTELAND S, HAFNERE J, TOULHLATF H. Periodic trends in hydrodesulfurization: In support of the sabatier principle[J]. Appl Catal A: Gen, 2002, 227(1/2): 83-96.

    7. [7]

      [7] 徐永强, 刘晨光. 4,6-二甲基二苯并噻吩在CoMo/γ-Al2O3加氢脱硫反应机理的研究[J]. 炼油技术与工程, 2003, 33(8): 21-25. (XU Yong-qiang, LIU Chen-guang. Study on the reaction mechanism of 4,6-dimethyldibenzothiophene hydrodesulphurization on CoMo/γ-Al2O3 catalys[J]. Petroleum Refinery Engineering, 2003, 33(8): 21-25.)

    8. [8]

      [8] WANG H, PRINS R. Hydrodesulfurization of dibenzothiophene, 4,6-dimethyldibenzothiophene and their hydrogenated intermediates over NiMoS2/γ-Al2O3[J]. J Catal, 2009, 264(1): 31-43.

    9. [9]

      [9] LECRENAY E, MOCHIDA I. Catalytic hydrodesulfurization of petroleum middle distillateand model sulfur compounds over a series of catalysts activity and scheme[J]. Stud Surf Sci Catal, 1997, 106(3): 333-342.

    10. [10]

      [10] MICHAUD P, LEMBERTON J L, PEROT G. Hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene: Effect of an acid component on the activityof a sulfided NiMo on alumina catalyst[J]. Appl Catal A: Gen, 1998, 169(9): 343-353.

    11. [11]

      [11] LECRENAY E, SAKANISHI K, MOCHIDA I. Catalytic hydrodesulfurization of gas oil and model sulfur compounds over commercial and laboratory-made CoMo and NiMo catalysts: Activity and reaction scheme[J]. Catal Today, 1997, 39(1/2): 13-20.

    12. [12]

      [12] LECRENAY E, SAKANISHI K, NAGAMATSU T, MOCHIDA I, SUZUKA T. Hydrodesulfurization activity of CoMo and NMo supported on Al2O3-TiO2 for somemodel compounds and gas oils[J]. Appl Catal B: Environ, 1998, 18(3): 325-330.

    13. [13]

      [13] PLANTENGA F L, CEFORTAIN R, EIJSBOUTS S, HOITERT F, ANDERSON G H, MISEO S, SOLED S, RILEY K, FUJITA K, INOUE Y. Nebula: A hydroprocessing catalysts with breakthrough activity[J]. Stud Surf Sci Catal, 2003, 145(8): 407-410.

    14. [14]

      [14] SOLED S L, MISEO S, KRYCAK R, VORMAN H, RILEY K L. Nickel molybodtungstate hydrotreating catalysts: US, 6299760. 2001-10-9.

    15. [15]

      [15] SOLED S L, MISEO S, ZHIGUO H. Bulk Ni-Mo-W catalysts made from precursors containing an organic agent: US, 7544632. 2009-06-09.

    16. [16]

      [16] LANDAU M V, BERGER D, HERSKOWITZ M. Hydrodesulfurization of methyl-substituted dibenzothiophenes: Fundamental study of routes to deep desulfurization[J]. J Catal, 1996, 159(1): 236-245.

  • 加载中
    1. [1]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    2. [2]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    3. [3]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    4. [4]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    5. [5]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    6. [6]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    7. [7]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    8. [8]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    9. [9]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    10. [10]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    11. [11]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    19. [19]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    20. [20]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

Metrics
  • PDF Downloads(0)
  • Abstract views(657)
  • HTML views(124)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return