Citation: ZHU Li-hua, XU Feng, WANG Jue, ZHAO Xiao-peng. Selective oxidation of methane to methanol in acetic acid solvent over Pd-CuPc/Y catalyst[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(8): 985-990. shu

Selective oxidation of methane to methanol in acetic acid solvent over Pd-CuPc/Y catalyst

  • Corresponding author: ZHU Li-hua, 
  • Received Date: 24 May 2013
    Available Online: 9 June 2013

    Fund Project: 国家自然科学基金(51004045) (51004045) 黑龙江省教育厅科学技术研究项目(12511481) (12511481) 哈尔滨市科技创新人才研究专项资金项目(2013RFQXJ085). (2013RFQXJ085)

  • The CuPc/Y which is copper phthalocyanine encapsulated inside the supercage of zeolite-Y was prepared with copper dichloride, ammonium molybdate, phthalic anhydride, urea and NaY molecular sieve by means of phthalic anhydride-urea solid state synthesis method. By using CuPc/Y as support, Pd-CuPc/Y composite catalyst was prepared by equivalent-volumetric impregnation method. The catalytic activity of the composite catalyst for selective aerobic oxidation of methane to methanol in acetic acid solvent was investigated. The results showed that the catalytic performance of the composite catalyst was related to reaction temperature, volume ratio of CH3COOH to H2O in acetic acid solvent, amount of p-benzoquinone and reaction time. The optimal yield of methanol was 1 840 μmol under the reaction conditions: 0.5 g of 0.5%Pd-0.5%CuPc/Y, 4 to 1 of volume ratio of CH3COOH to H2O in acetic acid solvent, 1 000 μmol of p-benzoquinone, 3 h of reaction time and 150 ℃ of reaction temperature. Pd-CuPc/Y catalyst could be reused repeatedly. However, the catalytic activity of reused catalyst decreased by catalyst loss and Pd particle aggregation. The selective oxidation of methane catalyzed by Pd-CuPc/Y catalyst in acetic acid solution possibly involved electrophilic substitute reaction and reactive oxygen species oxidation reaction.
  • 加载中
    1. [1]

      [1] 张昕, 贺德华, 张启俭, 朱起明. 甲烷气相均相选择氧化合成甲醇[J]. 石油化工, 2003, 32(3): 195-199. (ZHANG Xin, HE De-hua, ZHANG Qi-jian, ZHU Qi-ming. Studies on gas-phase homogeneous selective oxidation of methane to methanol[J].Petrochemical Technology, 2003, 32(3): 195-199.)

    2. [2]

      [2] 樊亚芳, 王春雷, 马丁, 包信和. 室温下钯-金属酞菁/分子筛复合催化剂催化甲烷选择氧化制甲醇[J]. 催化学报, 2010, 31(3): 302-306. (FAN Ya-fang, WANG Chun-lei, MA Ding, BAO Xin-he. Selective oxidation of methane to methanol over palladium-metallophthalocyanine composite catalysts at room temperature[J].Chinese Journal of Catalysis, 2010, 31(3): 302-306.)

    3. [3]

      [3] 徐锋, 朱丽华, 侯凤才, 沈斌. 醋酸溶液中Pd(OAc)2-对苯醌-CO催化甲烷选择氧化制甲醇[J]. 燃料化学学报, 2012, 40(9): 1098-1102. (XU Feng, ZHU Li-hua, HOU Feng-cai, SHEN Bin. Selective oxidation of methane to methanol over Pd(OAc)2-p-benzoquinone-CO catalyst system in acetic acid solvent[J]. Journal of Fuel Chemistry and Technology, 2012, 40(9): 1098-1102.)

    4. [4]

      [4] 徐锋, 朱丽华. 甲烷液相部分氧化制甲醇的动力学影响因素[J]. 石油化工, 2012, 41(10): 1137-1142. (XU Feng, ZHU Li-hua. Kinetic influencing factors for partial oxidation of methane to methanol in liquid phase[J]. Petrochemical Technology, 2012, 41(10): 1137-1142.)

    5. [5]

      [5] XU F, ZHU L H, BI Y W, HOU F C. Research on reaction mechanism of mine gas partial oxidation into methanol in acetic acid[J]. Res J Chem Environ, 2012, 16(s1): 122-126.

    6. [6]

      [6] 陈立宇, 杨伯伦, 张秀成. 甲烷直接液相转化合成甲醇的研究进展[J]. 石油化工, 2002, 31(11): 938-942. (CHEN Li-yu, YANG Bo-lun, ZHANG Xiu-cheng. Progress in direct conversion of methane to methanol in liquid phase[J]. Petrochemical Technology, 2002, 31(11): 938-942.)

    7. [7]

      [7] LIN M R, SEN A. Direct catalytic conversion of methane to acetic acid in an aqueous medium[J]. Nature, 1994, 368(6472): 613-615.

    8. [8]

      [8] YUAN Q, DENG W P, ZHANG Q H, WANG Y. Osmium-catalyzed selective oxidations of methane and ethane with hydrogen peroxide in aqueous medium[J]. Adv Synth Catal, 2007, 349(7): 1199-1209.

    9. [9]

      [9] PERIANA R A, TAUBE D J, EVITT E R, LOFFLER D G, WENTRCEK P R, VOSS G, MASUDA T. A mercury-catalyzed, high-yield system for the oxidation of methane to methanol[J]. Science, 1993, 259(5093): 340-343.

    10. [10]

      [10] SHILOV A E, SHUL'PIN G B. Activation of C-H bonds by metal complexes[J]. Chem Rev, 1997, 97(8): 2879-2932.

    11. [11]

      [11] MICHALKIEWICZ B, KALUCKI K, SOSNICKI J G. Catalytic system containing metallic palladium in the process of methane partial oxidation[J]. J Catal, 2003, 215(1): 14-19.

    12. [12]

      [12] 魏新, 叶林敏, 祝明霞, 袁友珠. 发烟硫酸中Pd/C催化甲烷选择氧化制甲醇[J]. 催化学报, 2008, 29(8): 720-726. (Wei Xin, YE Lin-min, ZHU Ming-xia, YUAN You-zhu. Selective oxidation of methane to methanol in oleum over Pd/C catalyst[J]. Chin J Catal, 2008, 29(8): 720-726.)

    13. [13]

      [13] PERIANA R A, MIRINOV O, TAUBE D J, GAMBLE S. High yield conversion of methane to methyl bisulfate catalyzed by iodine cations[J]. Chem Commun, 2002, (20): 2376-2377.

    14. [14]

      [14] CHEN L Y, YANG B L, ZHANG X C, DONG W, ZHANG X P. Methane partial oxidation in liquid phase using vanadium-containing heteropolyacid catalysts in oleum[J]. Chin J Catal, 2006, 27(6): 462-463.

    15. [15]

      [15] TRYNDA L. Complexes of iron, cobalt and copper tetrasulfonated phthalocyanines with apomyoglobin[J]. Inorg Chim Acta, 1983, 78(5): 229-237.

    16. [16]

      [16] RATNASAMY P, SRINIVASA D. Selective oxidations over zeolite and mesoporous silica-based catalysts: Selected examples[J]. Catal Today, 2009, 141(1/2): 3-11.

    17. [17]

      [17] METZ J, SCHNEIDER O, HANACK M. Synthesis and properties of substituted(phthalocyaninato)-iron and-cobalt compounds and their pyridine adducts[J]. Inorg Chem, 1984, 23(8): 1065-1071.

    18. [18]

      [18] 夏雪伟, 徐庆锋, 路建美, 姚社春, 王丽华, 陈飞, 朱秀林. 金属酞菁配合物的合成及其三阶非线性光学性能研究[J]. 高校化学工程学报, 2007, 2(1): 131-135. (XIA Xue-wei, XU Qing-feng, LU Jian-Mei, YAO She-chun, WANG Li-hua, CHEN Fei, ZHU Xiu-lin. Third-order nonlinear optical properties of metal phthalocyanine complex: Effect of central metal ions[J]. Journal of Chemical Engineering of Chinese Universities, 2007, 2(1): 131-135.)

    19. [19]

      [19] 范彬彬, 李瑞丰, 樊卫斌, 曹景慧, 钟炳. CuPc/Y分子筛制备与性能的研究[J]. 石油学报(石油加工), 2000, 16(1): 12-16. (FAN Bin-bin, LI Rui-feng, FAN Wei-bin, CAO Jing-hui, ZHONG Bing. Studies on preparation and characteristics of CuPc/Y zeolites[J].Acta Petrolei sinica (Petroleum Processing Section), 2000, 16(1): 12-16.)

    20. [20]

      [20] SHILOV A E, SHULPIN G B. Activation of C-H bonds by metal complex[J]. Chem Rev, 1997, 97(8): 2879-2932.

  • 加载中
    1. [1]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    2. [2]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    3. [3]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    4. [4]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    5. [5]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    6. [6]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    7. [7]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    8. [8]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    9. [9]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    12. [12]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    13. [13]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    14. [14]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    15. [15]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    16. [16]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    17. [17]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    18. [18]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    19. [19]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

    20. [20]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

Metrics
  • PDF Downloads(0)
  • Abstract views(492)
  • HTML views(65)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return