Citation:
CHEN Hong-gang, WANG Teng-da, ZHANG Kai, NIU Yu-guang, YANG Yong-ping. Thermodynamic analysis of carbon deposition on catalyst for the production of substitute natural gas[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(8): 978-984.
-
A comprehensive thermodynamic analysis was made on the carbon deposition behavior for the production of substitute natural gas (SNG) through syngas methanation. The component concentrations and the equilibrium constants of ten reactions involved in the syngas methanation were calculated at different temperatures; the effects of temperature, pressure, and the addition of other compounds in the feed gas on the behavior of carbon deposition were investigated. The results indicated that the catalyst bed is prone to carbon deposition at 550~800 ℃ and 0.1~1.5 MPa; as a result, lower temperature, higher pressure, and a larger H2/CO ratio are suitable for the methanation reactions. The addition of steam in the feed gas may alleviate the carbon deposition to a large extent, whilst a large amount of CO2 or CH4 in feed gas may lead to carbon deposition.
-
-
-
[1]
[1] 杨伯伦, 李星星, 伊春海, 蒋雪冬, 张勇, 周晓奇. 合成天然气技术进展[J]. 化工进展, 2011, 30(1): 110-116. (YANG Bo-lun, LI Xing-xing, YI Chun-hai, JIANG Xue-dong, ZHANG Yong, ZHOU Xiao-qi. Technological progress of synthetic natural gas[J]. Chemical Industry and Engineering Progress, 2011, 30(1): 110-116.)
-
[2]
[2] 张明. 煤制天然气示范对我国能源结构调整的意义及启示[J]. 中国石油和化工, 2011, 8: 24-35. (ZHANG Ming. Significance and enlightenment of coal to natural gas demonstration to China's energy structure adjustment[J].China Petroleum and Chemical Industry, 2011, 8: 24-35.)
-
[3]
[3] KOPYSCINSKI J, SCHILDHAUER J T, BIOLLAZ S M A. Production of synthetic natural gas (SNG) from coal and dry biomass-A technology review from 1950 to 2009[J]. Fuel, 2010, 89(8): 1763-1783.
-
[4]
[4] 晏双华, 双建永, 胡四斌. 煤制合成天然气工艺中甲烷化合成技术[J]. 化肥设计, 2010, 48(2): 19-32. (YAN Shuang-hua, SHUANG Jian-yong, HU Si-bin. Methanation synthesis technology in process of coal-to-synthetic natural gas[J]. Chemical Fertilizer Design, 2010, 48(2): 19-32.)
-
[5]
[5] 赵钢炜, 肖云汉, 王钰. 煤制天然气工艺技术和催化剂影响因素的分析探讨[J]. 陶瓷, 2009, (11): 21-25. (ZHAO Gang-wei, XIAO Yun-han, WANG Yu. Analysis and discussion of coal based synthetic natural gas process and the factors affecting the catalysts[J]. Ceramics, 2009, (11): 21-25.)
-
[6]
[6] 江展昌. 煤气甲烷化反应体系的热力学分析[J]. 煤气与热力, 1984, (6): 2-7. (JIANG Zhan-chang. Thermodynamic analysis for methanation system[J]. Gas & Heat, 1984, (6): 2-7.)
-
[7]
[7] 左玉帮, 刘永健, 李江涛, 李春启, 忻仕河. 合成气甲烷化制替代天然气热力学分析[J]. 化学工业与工程, 2011, (6): 47-53. (ZUO Yu-bang, LIU Yong-jian, LI Jiang-tao, LI Chun-qi, XIN Shi-he. Thermodynamic analysis for methanation of synthesis gas to substitute natural gas[J]. Chemical Industry and Engineering, 2011, (6): 47-53.)
-
[8]
[8] GAO J, WANG Y, PING Y, HU D, XU G, GU F, SU F. A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas[J]. RSC Advances, 2012, 2(6): 2358-2368.
-
[9]
[9] 崔晓曦, 曹会博, 孟凡会, 李忠. 合成气甲烷化热力学计算分析[J]. 天然气化工, 2012, 37(5): 15-19. (CUI Xiao-xi, CAO Hui-bo, MENG Fan-hui, LI Zhong.Thermodynamic analysis for methanation of syngas[J]. Natural Gas Chemical Industry, 2012, 37(5): 15-19.)
-
[10]
[10] 田基本. 煤制天然气气化技术选择[J]. 煤化工, 2009, (5): 8-11. (TIAN Ji-ben.Selection of coal gasification technology for SNG[J]. Coal Chemical Industry, 2009, (5): 8-11.)
-
[11]
[11] KHORSAND K, MARVAST M A, POOLADIAN N, KAKAVAND M. Modeling and simulation of methanation catalytic reactor in ammonia unit[J]. Petroleum Coal, 2007, 49(1): 46-53.
-
[12]
[12] 朱开宏, 袁渭康. 化学反应工程分析[M]. 北京: 高等教育出版社, 2002. (ZHU Kai-hong, YUAN Wei-kang.Analysis of chemical reaction engineering[M]. Beijing: Higher Education Press, 2002.)
-
[13]
[13] 陈宏刚, 赵辉, 孙亚玲, 张永发. 氢/氩热等离子体裂解煤碳-氢-氧-氩多相组分体系的热力学分析[J]. 过程工程学报, 2009, 9(1): 79-83. (CHEN Hong-gang, ZHAO Hui, SUN Ya-ling, ZHANG Yong-fa.Thermodynamic analysis of hydrogen-carbon-oxygen-argon system for coal pyrolysis in hydrogen-Argon thermal plasma[J]. The Chinese Journal of Process Engineering, 2009, 9(1): 79-83.)
-
[14]
[14] HERWIJNEN T, DOESBURG H, DE JONG W. Kinetics of the methanation of CO and CO2 on a nickel catalyst[J]. J Catal, 1973, 28(3): 391-402.
-
[1]
-
-
-
[1]
Jianchun Wang , Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082
-
[2]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
-
[3]
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067
-
[4]
Wenlong Wang , Wentao Hao , Lang He , Jia Qiao , Ning Li , Chaoqiu Chen , Yong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116
-
[5]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[6]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[7]
Chunguang Rong , Miaojun Xu , Xingde Xiang , Song Liu . 化学热力学熵变计算的教学探讨. University Chemistry, 2025, 40(8): 323-329. doi: 10.12461/PKU.DXHX202409146
-
[8]
Tongqi Ye , Yanqing Wang , Qi Wang , Huaiping Cong , Xianghua Kong , Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128
-
[9]
Xiaohui Li , Ze Zhang , Jingyi Cui , Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027
-
[10]
Weigang Zhu , Xiaofei Ma , Yun Tian , Huaji Liu , Fanli Lu , Yalu Ma . 基于知识图谱的“无机化学与化学分析”课程信息化教学资源构建与应用研究. University Chemistry, 2025, 40(6): 9-15. doi: 10.12461/PKU.DXHX202408113
-
[11]
Xichen YAO , Shuxian WANG , Yun WANG , Cheng WANG , Chuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384
-
[12]
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057
-
[13]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[14]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[15]
Dong Xiang , Kunzhen Li , Kanghua Miao , Ran Long , Yujie Xiong , Xiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027
-
[16]
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071
-
[17]
Cuicui Yang , Bo Shang , Xiaohua Chen , Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066
-
[18]
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
-
[19]
Zhuomin Zhang , Lanrui Yang , Baorong Zhang , Gongke Li . 化学分析全英课程思政建设初探. University Chemistry, 2025, 40(8): 58-65. doi: 10.12461/PKU.DXHX202410010
-
[20]
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(669)
- HTML views(79)