Citation: WANG Yong-zhao, LI Feng-mei, CHENG Hui-min, FAN Li-yuan, ZHAO Yong-xiang. A comparative study on the catalytic properties of high Ni-loading Ni/SiO2 and low Ni-loading Ni-Ce/SiO2 for CO methanation[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(8): 972-977. shu

A comparative study on the catalytic properties of high Ni-loading Ni/SiO2 and low Ni-loading Ni-Ce/SiO2 for CO methanation

  • Corresponding author: WANG Yong-zhao,  ZHAO Yong-xiang, 
  • Received Date: 27 May 2013
    Available Online: 17 June 2013

    Fund Project: National Natural Science Fundation of china(21073114) (21073114) Youth Scientific and Technological Foundation of Shanxi Province (2010021008-3) (2010021008-3)

  • Two Ni-based catalysts of 13%Ni/SiO2(13Ni/Si) and 7%Ni-2%Ce/SiO2(7Ni-2Ce/Si, by weight) were prepared by the incipient-wetness impregnation method and characterized with N2-sorption, XRD, H2-TPR, FT-IR, TEM, H2-TPD and CO-TPD techniques. It was shown that addition of Ce promoter generated an interaction among NiO, CeO2 and SiO2, which changed chemical environment of Ni-O-Si bond, enhanced the dispersion and reduction of NiO, and increased the active surface area. In particular, a new type of moderately strong CO adsorption sites was formed on the surface of the 7Ni-2Ce/Si catalyst. As a result, the low Ni-loading 7Ni-2Ce/Si catalyst exhibited higher CO adsorption capacity and CO methanation catalytic activity than the high Ni-loading 13Ni/Si. Under the reaction conditions of 1% CO (volume fraction in H2 atmosphere), GHSV of 7 000 h-1 and atmospheric pressure, the temperature for complete conversion of CO over the 7Ni-2Ce/Si catalyst was 230 ℃, being 30 ℃ lower than that found over the high Ni loading 13Ni/Si catalyst.
  • 加载中
    1. [1]

      [1] WU R F, ZHANG Y, WANG Y Z, GAO C G, ZHAO Y X. Effect of ZrO2 promoter on the catalytic activity for CO methanation and adsorption performance of the Ni/SiO2 catalyst[J]. Journal of Fuel Chemistry and Technology, 2009, 37(5): 578-582.

    2. [2]

      [2] PARK E D, LEE D, LEE H C. Recent progress in selective CO removal in a H2-rich stream[J]. Catal Today, 2009, 139(4): 280-289.

    3. [3]

      [3] WANG N, SUN Z J, WANG Y Z, GAO X Q, ZHAO Y X. Preparation of bimetallic Ni-Fe/γ-Al2O3 catalyst and its activity for CO methamation[J]. Journal of Fuel Chemistry and Technology, 2011, 39(3): 219-223.

    4. [4]

      [4] WANF B W, SHANG Y G, DING G Z, WANG H Y, WANG E D, LI Z H, MA X B, QIN S D, SUN Q. Ceria-alumina composite support on the sulfur-resistant methanation activity of Mo-based catalyst[J]. Journal of Fuel Chemistry and Technology, 2012, 40(11): 1390-1396.

    5. [5]

      [5] GALLETTI C, SPECCHIA S, SARACCO G and SPECCHIA V. CO selective methanation over Ru/γ-Al2O3 catalysts in H2-rich gas for PEMFC applications[J]. Chem Eng Sci, 2010, 65(1): 590-596.

    6. [6]

      [6] DAGLE R A, WANG Y, XIA G G, STROHM J J, HOLLADAY J, PALO D R. Selective CO methanation catalysts for fuel processing applications[J]. Appl Catal A: Gen, 2007, 326(2): 213-218.

    7. [7]

      [7] TRIMM D L. Minimisation of carbon monoxide in a hydrogen stream for fuel cell application[J]. Appl Catal A: Gen, 2005, 296(1): 1-11.

    8. [8]

      [8] SONG L, CHEN T H, LI Y X, LIU H B, KONG D J, CHEN D. Performance of palygorskite supported Cu-Mn-Ce catalyst for catalytic oxidation of toluene[J].Chinese Journal of Catalysis, 2011, 32(4): 652-656.

    9. [9]

      [9] WANG W, WANG J B, ZHU W P, YANG S X, HE W J, CHUN X. Catalytic wet air oxidation of acetic acid and phenol with Ru/ZrO2-CeO2 catalysts[J]. Journal of Molecular Catalysis(China), 2007, 21(5): 401-405.

    10. [10]

      [10] ZHAO B X, LIU L X, ZHANG Y Z, CAO X, ZHANG X L, JIN Q T. Effect of doped CeO2 loading on catalytic activity of Cu-Ni-Ce/SiO2 catalyst[J]. Journal of Molecular Catalysis(China), 2008, 22(6): 507-512.

    11. [11]

      [11] LIAO Q L, LIANG Z C, QIN Y N, TIAN J X. Promoting effects of La2O3 and CeO2 on catalytic activity of Ni catalysts[J]. Journal of the Chinese Society of Rare Earths, 1995, 13(1): 35-38.

    12. [12]

      [12] JIN R C, CHEN Y X, LI W Z, JI Y Y, QIN Y S, JIANG Y. Ni/α-Al2O3 catalyst for the partial oxidation of methane to syngas[J]. Acta Physico-Chimica Snica, 1998, 14(8): 737-741.

    13. [13]

      [13] ZHENG W Q, ZHANG J, GE Q J, XU H Y, LI W Z. Effects of CeO2 addition on Ni/Al2O3 catalysts for the reaction of ammonia decomposition to hydrogen[J]. Appl Catal B: Environ, 2008, 80(1/2): 98-105.

    14. [14]

      [14] LI F M, WANG Y Z, ZHANG Z, ZHAO Y X. Promoting effects of Ce promoter on catalytic activity of Ni/SiO2 catalyst for CO methanation[J]. Ind Catal, 2011, 19(11): 70-74.

    15. [15]

      [15] WEI S Q, LI L B, SHUANG Y C, XU H Y, XU G L. Study on performance of co-precipitated Ni-La2O3/ZrO2 catalyst for CO2 methanation[J]. Nat Gas Chem Ind, 2004, 29(5): 10-13.

    16. [16]

      [16] WANG Y Z, WU R F, ZHAO Y X. Effect of ZrO2 promoter on structure and catalytic activity of the Ni/SiO2 catalyst for CO methanation in hydrogen-rich gases[J]. Catal Today, 2010, 158(3/4): 470-474.

    17. [17]

      [17] TOHJI K, UDAGAWH Y, TANABE S, UENO A. Catalyst preparation procedure probed by EXAFS spectroscopy. 1. Nickel on silica[J]. J Am Chem Soc, 1984, 106(3): 612-617.

    18. [18]

      [18] VELU S, GANGWAL S K. Synthesis of alumina supported nickel nanoparticle catalysts and evaluation of nickel metal dispersions by temperature programmed desorption[J]. Solid State Ion, 2006, 177(7/8): 803-811.

    19. [19]

      [19] GAO X Q, WANG Y Z, LI H T, ZHAO Y X. Effect of manganese promoter on the catalytic performance of Ni/γ-Al2O3 catalyst for CO2 methanation[J]. Journal of Molecular Catalysis(China), 2011, 25(1): 49-53.

    20. [20]

      [20] LU G Z, WANG R. Effect of CeO2 on the adsorption capacity of NO, CO on the Cu-Mn-O catalyst[J]. Journal of the Chinese Society of Rare Earths, 1993, 11(4): 311-316.

  • 加载中
    1. [1]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    2. [2]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    3. [3]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    4. [4]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    5. [5]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    6. [6]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    7. [7]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    8. [8]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    13. [13]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    14. [14]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    15. [15]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    16. [16]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    17. [17]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    18. [18]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

Metrics
  • PDF Downloads(0)
  • Abstract views(509)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return