Citation:
ZHANG Jun-feng, BAI Yun-xing, ZHANG Qing-de, XIE Hong-juan, TAN Yi-sheng, HAN Yi-zhuo. Low temperature methanation of syngas in a slurry reactor over Zr-doped Ni/γ-Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(8): 966-971.
-
Zr-doped Ni/γ-Al2O3 catalyst was prepared by co-impregnation of Ni and Zr on γ-Al2O3; over it, the methanation of syngas at low temperature (300~330 ℃) in a slurry reactor was investigated. Compared with single NiO and Ni/γ-Al2O3, the catalytic performance of the Zr-doped Ni/γ-Al2O3 is greatly improved. Under optimized condition, a high CO conversion of 86.41% and a selectivity of 90.53% to CH4 are achieved at a GHSV of 4 200 mL·g-1·h-1. XRD, TEM and H2-TPR results suggest that the doping of Zr promotes dispersion of Ni on γ-Al2O3, weakens the interaction between Ni and the support and suppresses the formation of NiAl2O4 spinel with low methanation activity; all these may contribute to the excellent performance of the Zr-doped Ni/γ-Al2O3 catalyst in syngas methanation.
-
Keywords:
- syngas,
- methanation,
- natural gas,
- slurry reactor,
- low temperature
-
-
-
[1]
[1] 胡大成,高加俭,贾春苗, 平原,贾丽华,王莹利,许光文,古芳娜,苏发兵. 甲烷化催化剂及反应机理的研究进展[J]. 过程工程学报, 2011, 11(5): 880-893. ( HU Da-cheng, GAO Jia-jian, JIA Chun-miao, PING Yuan, JIA Li-hua, WANG Ying-li, XU Guang-wen, GU Fang-na, SU Fa-bing. Research advances in methanation catalysts and their catalytic mechanisms[J]. The Chinese Journal of Process Engineering, 2011, 11(5): 880-893.)
-
[2]
[2] PAN Z Y, DONG M H, MENG X K, ZHANG X X, MU X H, ZONG B N. Integration of magnetically stabilized bed and amorphous nickel alloy catalyst for CO methanation[J]. Chem Eng Sci, 2007, 62(10): 2712-2717.
-
[3]
[3] 谭猗生. 浆态床二甲醚合成催化剂制备化学的研究. 太原: 中国科学院山西煤炭化学研究所, 2006. ( TAN Yi-sheng. Study on the preparation chemistry of composite catalyst for slurry phase dimethyl ether synthesis. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Science, 2006.)
-
[4]
[4] ZHAO A M, YING W Y, ZHANG H T, MA H F, FANG D Y. Ni-Al2O3 catalysts prepared by solution combustion method for syngas methanation[J]. Catal Comm, 2012, 17: 34-38.
-
[5]
[5] 谭静,王乃继,肖翠微,周建明, 李婷,宋春燕. 煤制天然气镍基催化剂的研究进展[J]. 洁净煤技术,2011, 17(2): 43-45. ( TAN Jing, WANG Nai-ji, XIAO Cui-wei, ZHOU Jian-ming, LI Ting, SONG Chun-yan. Regression analysis of coal calorific value in Rujigou coalmine[J]. Clean Coal Technology, 2011, 17(2): 43-45.)
-
[6]
[6] 马胜利,谭猗生,张清德,韩怡卓. α-Ni/γ-Al2O3催化剂催化一氧化碳甲烷化反应的研究[J]. 天然气化工,2009, 34(6): 1-3. ( MA Sheng-li, TAN Yi-sheng, ZHANG Qing-de, HAN Yi-zhuo. Study on α-Ni-A12O3 catalysts for methanation of carbon monoxide[J]. Natural Gas Chemical Industry, 2009, 34(6): 1-3.)
-
[7]
[7] KOBAYASHI Y, HORIGUCHI J, KOBAYASHI S, YAMAZAKI Y, OMATA K, NAGAO D, KONNO M, YAMADA M. Effect of NiO content in mesoporous NiO-Al2O3 catalysts for high pressure partial oxidation of methane to syngas[J]. Appl Catal A: Gen, 2011, 395(1): 129-137.
-
[8]
[8] 詹吉山,郭翠梨,张俊涛,张金利. TiO2对Ni/Al2O3催化剂CO甲烷化性能的影响[J]. 燃料化学学报, 2012, 40(5): 589-593. ( ZHAN Ji-shan, GUO Cui-li, ZHANG Jun-tao, ZHANG Jin-li. Effects of TiO2 promoter on the catalytic performance of Ni/Al2O3 in CO methanation[J]. Journal of Fuel Chemistry and Technology, 2012, 40(5): 589-593.)
-
[9]
[9] 王宁. 焙烧温度对Ni-Fe/γ-Al2O3催化剂一氧化碳甲烷化性能的影响[J]. 科技情报开发与经济, 2010, 20(18): 158-160. ( WANG Ning. Discussion on the influences of the calcination temperature on CO methanation performance of Ni-Fe/γ-Al2O3 catalyst[J]. Sci-Tech Information Development & Economy, 2010, 20(18): 158-160.)
-
[10]
[10] MA S L, TAN YS, HAN Yi Z. Water-gas shift coupling with methanation over MOx modified nanorod-NiO/γ-Al2O3 catalysts[J]. J Ind Eng Chem, 2011, 17(4): 723-726.
-
[11]
[11] CHENG Z X, WU Q L, LI Ji L, ZHU Q M. Effects of promoters and preparation procedures on reforming of methane with carbon dioxide over Ni/Al2O3 catalyst[J]. Catal Today, 1996, 30(1): 147-155.
-
[12]
[12] LIU Q H, DONG X F, LIN W M. Highly selective CO methanation over amorphous Ni-Ru-/ZrO2 catalyst[J]. Chin Chem Lett, 2009, 20(8): 889-892.
-
[13]
[13] CHEN A H, MIYAO T, HIGASHIYAMA K, YAMASHITA H. high catalytic performance of ruthenium-doped mesoporous nickel-aluminum oxides for selective CO methanation[J]. Angew Chem, 2010, 122(51): 10091-10094.
-
[14]
[14] ZHAO A M, YING W Y, ZHANG H T, MA H F, FANG D Y. Ni/Al2O3 catalysts for syngas methanation: Effect of Mn promoter[J]. J Nat Gas Chem, 2012, 21(2): 170-177.
-
[15]
[15] KRMER M, STÖWE K, DUISBERG M, MVLLER F, REISER M, STICHER S, MAIER W F. The impact of dopants on the activity and selectivity of a Ni-based methanation catalyst[J]. Appl Catal A: Gen, 2009, 369(1): 42-52.
-
[16]
[16] TAKENAKA S, SHIMIZU T, OTSUKA K. Complete removal of carbon monoxide in hydrogen-rich gas stream through methanation over supported metal catalysts[J]. Int J Hydrogen Energy, 2004, 29(10): 1065-1073.
-
[17]
[17] 莫欣满,董新法,刘其海,林维明. 纳米ZrO2负载Ni催化剂催化CO选择性甲烷化[J]. 石油化工, 2009, 37(7): 656-661. ( MO Xin-man, DONG Xin-fa, LIU Qi-hai, LIN Wei-ming. Selectivity methanation of CO over Ni-based catalysts supported on Nano-ZrO2[J]. Petrochemical Technology, 2009, 37(7): 656-661.)
-
[18]
[18] DA SILVA D C D, LETICHEVSKY S, BORGES L E P, APPEL L G. The Ni/ZrO2 catalyst and the methanation of CO and CO2[J]. Int J Hydrogen Energy, 2012, 37(11): 8923-8928.
-
[19]
[19] SENANAYAKE S D, EVANS J, AGNOLI S, BARRIO L, CHEN T L, HRBEK J, RODRIGUEZ J A. Water-gas shift and CO methanation reactions over Ni-CeO2(111) catalysts[J]. Top Catal, 2011, 54(1): 34-41.
-
[20]
[20] WANG Y Z, WU R F, ZHAO Y X. Effect of ZrO2 promoter on structure and catalytic activity of the Ni/SiO2 catalyst for CO methanation in hydrogen-rich gases[J]. Catal Today, 2010, 158(3): 470-474.
-
[21]
[21] XAVIER K, SREEKALA R, RASHID K, YUSUFF K, SEN B. Doping effects of cerium oxide on Ni/Al2O3 catalysts for methanation[J]. Catal Today, 1999, 49(1): 17-21.
-
[22]
[22] WANG S, MAO D S, GUO X M, WU G S, LU G Z. Dimethyl ether synthesis via CO2 hydrogenation over CuO-TiO2-ZrO2/HZSM-5 bifunctional catalysts[J]. Catal Comm, 2009, 10(10): 1367-1370.
-
[23]
[23] LIU Y Y, MURATA K, INABA M, TAKAHARA I, OKABE K. Synthesis of ethanol from syngas over RhCe1-xZrxO2 catalysts[J]. Catal Today, 2011, 164(1): 308-314.
-
[24]
[24] LIANG H, YUAN H G, WEI F, ZHANG X W, LIU Y. Zirconia modified monolithic macroporous Pt/CeO2/Al2O3 catalyst used for water-gas shift reaction[J]. J Rare Earths, 2011, 29(8): 753-757.
-
[25]
[25] HU D C, GAO J J, PING Y, JIA L H, GUNAWAN P, ZHONG Z Y, XU G W, GU F N, SU F B. Enhanced investigation of CO methanation over Ni/Al2O3 catalysts for synthetic natural gas production[J]. Ind Eng Chem Res, 2012, 51(13): 4875-4886.
-
[26]
[26] GUO J J, LOU H, ZHAO H, CHAI D F, ZHENG X M. Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels[J]. Appl Catal A: Gen, 2004, 273(1): 75-82.
-
[1]
-
-
-
[1]
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
-
[2]
Xiaowu Zhang , Pai Liu , Qishen Huang , Shufeng Pang , Zhiming Gao , Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021
-
[3]
Jiahe LIU , Gan TANG , Kai CHEN , Mingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023
-
[4]
Xuanzhu Huo , Yixi Liu , Qiyu Wu , Zhiqiang Dong , Chanzi Ruan , Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095
-
[5]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[6]
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
-
[7]
Yuping Wei , Yiting Wang , Jialiang Jiang , Jinxuan Deng , Hong Zhang , Xiaofei Ma , Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007
-
[8]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[9]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[10]
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036
-
[11]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[12]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[13]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[14]
Feng Zheng , Ruxun Yuan , Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027
-
[15]
Mengzhen JIANG , Qian WANG , Junfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355
-
[16]
Wenjie SHI , Fan LU , Mengwei CHEN , Jin WANG , Yingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360
-
[17]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[18]
Hong RAO , Yang HU , Yicong MA , Chunxin LÜ , Wei ZHONG , Lihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275
-
[19]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[20]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(353)
- HTML views(19)