Citation:
CAO Yue-ling, WANG Jun-wei, LI Qi-feng, YIN Ning, LIU Zhen-min, KANG Mao-qing, ZHU Yu-lei. Hydrolytic hydrogenation of cellulose over Ni-WO3/SBA-15 catalysts[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(8): 943-949.
-
Series of non-precious metal catalysts Ni-WO3/SBA-15 were prepared by means of incipient impregnation and applied to the hydrogenalysis of cellulose in aqueous solution. The effect of reaction temperature on the hydrolysis and morphology of cellulose, and the influence of Ni, WO3 loading on the conversion of cellulose were investigated. High crystalline cellulose was transformed gradually into amorphous state with the increase of reaction temperature. H2 temperature program reduction of the catalyst proved that a strong interaction existed between nickel and tungsten trioxide, which enhanced the ability of tungsten species to the cleavage of C-C bond and the activity of hydrogenation of nickel. Thus, the transformation of cellulose into ethylene glycol was strengthened markedly. The complete conversion of cellulose and 70.7% ethylene glycol yield were obtained over a 3%Ni-15%WO3/SBA-15 catalyst under the reaction condition of 230 ℃and 6.0 MPa H2 for 6.0 h.
-
Keywords:
- cellulose,
- Ni-WO3/SBA-15,
- hydrogenolysis,
- ethylene glycol
-
-
-
[1]
[1] ONDA A, OCHI T, YANAGISAWA K. Selective hydrolysis of cellulose into glucose over solid catalysts[J]. Green Chem, 2008, 10(10): 1033-1037.
-
[2]
[2] SU Y, BROWN H M, HUANG X W, ZHOU X D, AMONETTE J E, ZHANG Z C. Single-step conversion of cellulose to 5-hydroxymethylfurfural(HMF), a versatile platform chemical[J]. Appl Catal A: Gen, 2009, 361(1/2): 117-122.
-
[3]
[3] ZHENG M Y, WANG A Q, JI N, PANG J F, WANG X D, ZHANG T. Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol[J]. ChemSusChem, 2010, 3(1): 63-66.
-
[4]
[4] HUBER G W, CHHEDA J N, BARRETT C J, DUMESIC J A. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates[J]. Science, 2005, 308(5727): 1446-1450.
-
[5]
[5] ZHANG J Z, LIU X, SUN M, MA X H, HAN Y. Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium[J]. ACS Catal, 2012, 2(8): 1698-1702.
-
[6]
[6] FUKUOKA A, DHEPE P L. Catalytic conversion of cellulose into sugar alcohols[J]. Angew Chem, 2006, 118(31): 5285-5287.
-
[7]
[7] DENG W P, TAN X S, FANG W H, ZHANG Q H, WANG Y. Conversion of cellusoe into sorbitol over carbon nanotube-supported ruthenium catalyst[J]. Catal Lett, 2009, 133(2): 167-174.
-
[8]
[8] YOU S J, BAEK I G, KIM Y T, JEONG K E, CHAE H J, KIM T W, KIM C U, JEONG S Y, KIM T J, CHUNG Y M, OH S H, PARK E D. Direct conversion of cellulose into polyols or H2 over Pt/Na(H)-ZSM-5[J]. Korean J Chem Eng, 2011, 28(3): 744-750.
-
[9]
[9] GEBOERS J, VAN DE VYVER S, CARPENTIER K, JACOBS P, SELS B. Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon[J]. Catal Commun, 2010, 46(20): 3577-3579.
-
[10]
[10] LIANG G F, WU C Y, HE L M, MING J, CHENG H Y, ZHUO L H, ZHAO F Y. Selective conversion of concentrated microcrystalline cellulose to isosorbide over Ru/C catalyst[J]. Green Chem, 2011, 13(4): 839-842.
-
[11]
[11] GEBOERS J, VAN DE VYVER S, CARPENTIER K, JACOBS P, SELS B. Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid[J]. Catal Commun, 2011, 47(19): 5590-5592.
-
[12]
[12] JI N, ZHANG T, ZHENG M Y, WANG A Q, WANG H, WANG X D, CHENG J G. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts[J]. Angew Chem, 2008, 120(44): 8638-8641.
-
[13]
[13] ZHANG Y H, WANG A Q, ZHANG T. A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol[J]. Chem Comm, 2010, 46(6): 862-864.
-
[14]
[14] WANG X C, MENG L Q, WU F, JIANG Y J, WANG L, MU X D. Efficient conversion of microcrystalline cellulose to 1,2- alkanediols over supported Ni catalysts[J]. Green Chem, 2012, 14(3): 758-765.
-
[15]
[15] DING L N, WANG A Q, ZHENG M Y, ZHANG T. Selective transformation of cellulose into sorbitol by using a bifunc-tional nickel phosphide catalyst[J]. ChemSusChem, 2010, 3(7): 818-821.
-
[16]
[16] REYES-LUYANDA D, FLORES-CRUZ J, MORALES-PREZ P J, ENCARNACIN-GMEZ L G, SHI F, VOYLES P M, CARDO-NA-MARTNEZ N. Bifunctional materials for the catalytic conversion of cellulose into soluble renewable biorefinery feedstocks[J]. Top Catal, 2012, 55(3): 148-161.
-
[17]
[17] JOLLET V, CHAMBON F, RATABOUL F, CABIAC A, PINEL C, GUILLON E, ESSAYEM N. Non-catalyzed and Pt/γ-Al2O3-catalyzed hydrothermal cellulose dissolution-conversion: Influence of the reaction parameters and analysis of the unreacted cellulose[J]. Green Chem, 2009, 11(12): 2052-2060.
-
[18]
[18] SHROTRI A, TANKSALE A, BELTRAMINI J N, GURAV H, CHILUKURI S V. Conversion of cellulose to polyols over promoted nickel catalysts[J]. Catal Sci Technol, 2012, 2(9): 1852-1858.
-
[19]
[19] CAMPBELL C T, GOODMAN D W. A surface science investigation of the role of potassium promoters in nickel catalysts for CO hydrogenation[J]. Surf Sci, 1982, 123(2/3): 413-426.
-
[20]
[20] SWAAN H M, KROLL V C H, MARTIN G A, MIRODATOS C. Deactivation of supported nickel catalysts during the re-forming of methane by carbon dioxide[J]. Catal Today, 1994, 21(1): 571-578.
-
[21]
[21] LIU Y, LUO C, LIU H C. Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst[J]. Angew Chem Int Ed, 2012, 51(13): 3249-3253.
-
[22]
[22] VAN DE VYVER S, GEBOERS J, JACOBS P A, SELS B F. Recent advances in the catalytic conversion of cellulose[J]. ChemCatChem, 2011, 3(1): 82-94.
-
[23]
[23] TAI Z J, ZHANG J Y, WANG A Q, ZHENG M Y, ZHANG T. Temperature-controlled phase-transfer catalysis for ethylene glycol production from cellulose[J]. Chem Commun, 2012, 48(56): 7052-7054.
-
[1]
-
-
-
[1]
Yan'e LIU , Shengli JIA , Yifan JIANG , Qinghua ZHAO , Yi LI , Xinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054
-
[2]
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
-
[3]
Xinhao Yan , Guoliang Hu , Ruixi Chen , Hongyu Liu , Qizhi Yao , Jiao Li , Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073
-
[4]
Yuanyuan Ping , Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092
-
[5]
Lisha LEI , Wei YONG , Yiting CHENG , Yibo WANG , Wenchao HUANG , Junhuan ZHAO , Zhongjie ZHAI , Yangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202
-
[6]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[7]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005
-
[8]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[9]
Shuang Cao , Bo Zhong , Chuanbiao Bie , Bei Cheng , Feiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016
-
[10]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[11]
Hao GUO , Tong WEI , Qingqing SHEN , Anqi HONG , Zeting DENG , Zheng FANG , Jichao SHI , Renhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085
-
[12]
Yajin Li , Huimin Liu , Lan Ma , Jiaxiong Liu , Dehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005
-
[13]
Linjie ZHU , Xufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416
-
[14]
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
-
[15]
Yifeng TAN , Ping CAO , Kai MA , Jingtong LI , Yuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147
-
[16]
Jianqiao ZHANG , Yang LIU , Yan HE , Yaling ZHOU , Fan YANG , Shihui CHENG , Bin XIA , Zhong WANG , Shijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444
-
[17]
Kexin Yan , Zhaoqi Ye , Lingtao Kong , He Li , Xue Yang , Yahong Zhang , Hongbin Zhang , Yi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019
-
[18]
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032
-
[19]
Haitao Wang , Lianglang Yu , Jizhou Jiang , Arramel , Jing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047
-
[20]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(476)
- HTML views(79)