Citation: CAO Yue-ling, WANG Jun-wei, LI Qi-feng, YIN Ning, LIU Zhen-min, KANG Mao-qing, ZHU Yu-lei. Hydrolytic hydrogenation of cellulose over Ni-WO3/SBA-15 catalysts[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(8): 943-949. shu

Hydrolytic hydrogenation of cellulose over Ni-WO3/SBA-15 catalysts

  • Corresponding author: WANG Jun-wei, 
  • Received Date: 13 April 2013
    Available Online: 21 June 2013

    Fund Project: 国家重点基础研究发展规划(973计划, 2012CB215305). (973计划, 2012CB215305)

  • Series of non-precious metal catalysts Ni-WO3/SBA-15 were prepared by means of incipient impregnation and applied to the hydrogenalysis of cellulose in aqueous solution. The effect of reaction temperature on the hydrolysis and morphology of cellulose, and the influence of Ni, WO3 loading on the conversion of cellulose were investigated. High crystalline cellulose was transformed gradually into amorphous state with the increase of reaction temperature. H2 temperature program reduction of the catalyst proved that a strong interaction existed between nickel and tungsten trioxide, which enhanced the ability of tungsten species to the cleavage of C-C bond and the activity of hydrogenation of nickel. Thus, the transformation of cellulose into ethylene glycol was strengthened markedly. The complete conversion of cellulose and 70.7% ethylene glycol yield were obtained over a 3%Ni-15%WO3/SBA-15 catalyst under the reaction condition of 230 ℃and 6.0 MPa H2 for 6.0 h.
  • 加载中
    1. [1]

      [1] ONDA A, OCHI T, YANAGISAWA K. Selective hydrolysis of cellulose into glucose over solid catalysts[J]. Green Chem, 2008, 10(10): 1033-1037.

    2. [2]

      [2] SU Y, BROWN H M, HUANG X W, ZHOU X D, AMONETTE J E, ZHANG Z C. Single-step conversion of cellulose to 5-hydroxymethylfurfural(HMF), a versatile platform chemical[J]. Appl Catal A: Gen, 2009, 361(1/2): 117-122.

    3. [3]

      [3] ZHENG M Y, WANG A Q, JI N, PANG J F, WANG X D, ZHANG T. Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol[J]. ChemSusChem, 2010, 3(1): 63-66.

    4. [4]

      [4] HUBER G W, CHHEDA J N, BARRETT C J, DUMESIC J A. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates[J]. Science, 2005, 308(5727): 1446-1450.

    5. [5]

      [5] ZHANG J Z, LIU X, SUN M, MA X H, HAN Y. Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium[J]. ACS Catal, 2012, 2(8): 1698-1702.

    6. [6]

      [6] FUKUOKA A, DHEPE P L. Catalytic conversion of cellulose into sugar alcohols[J]. Angew Chem, 2006, 118(31): 5285-5287.

    7. [7]

      [7] DENG W P, TAN X S, FANG W H, ZHANG Q H, WANG Y. Conversion of cellusoe into sorbitol over carbon nanotube-supported ruthenium catalyst[J]. Catal Lett, 2009, 133(2): 167-174.

    8. [8]

      [8] YOU S J, BAEK I G, KIM Y T, JEONG K E, CHAE H J, KIM T W, KIM C U, JEONG S Y, KIM T J, CHUNG Y M, OH S H, PARK E D. Direct conversion of cellulose into polyols or H2 over Pt/Na(H)-ZSM-5[J]. Korean J Chem Eng, 2011, 28(3): 744-750.

    9. [9]

      [9] GEBOERS J, VAN DE VYVER S, CARPENTIER K, JACOBS P, SELS B. Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon[J]. Catal Commun, 2010, 46(20): 3577-3579.

    10. [10]

      [10] LIANG G F, WU C Y, HE L M, MING J, CHENG H Y, ZHUO L H, ZHAO F Y. Selective conversion of concentrated microcrystalline cellulose to isosorbide over Ru/C catalyst[J]. Green Chem, 2011, 13(4): 839-842.

    11. [11]

      [11] GEBOERS J, VAN DE VYVER S, CARPENTIER K, JACOBS P, SELS B. Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid[J]. Catal Commun, 2011, 47(19): 5590-5592.

    12. [12]

      [12] JI N, ZHANG T, ZHENG M Y, WANG A Q, WANG H, WANG X D, CHENG J G. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts[J]. Angew Chem, 2008, 120(44): 8638-8641.

    13. [13]

      [13] ZHANG Y H, WANG A Q, ZHANG T. A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol[J]. Chem Comm, 2010, 46(6): 862-864.

    14. [14]

      [14] WANG X C, MENG L Q, WU F, JIANG Y J, WANG L, MU X D. Efficient conversion of microcrystalline cellulose to 1,2- alkanediols over supported Ni catalysts[J]. Green Chem, 2012, 14(3): 758-765.

    15. [15]

      [15] DING L N, WANG A Q, ZHENG M Y, ZHANG T. Selective transformation of cellulose into sorbitol by using a bifunc-tional nickel phosphide catalyst[J]. ChemSusChem, 2010, 3(7): 818-821.

    16. [16]

      [16] REYES-LUYANDA D, FLORES-CRUZ J, MORALES-PREZ P J, ENCARNACIN-GMEZ L G, SHI F, VOYLES P M, CARDO-NA-MARTNEZ N. Bifunctional materials for the catalytic conversion of cellulose into soluble renewable biorefinery feedstocks[J]. Top Catal, 2012, 55(3): 148-161.

    17. [17]

      [17] JOLLET V, CHAMBON F, RATABOUL F, CABIAC A, PINEL C, GUILLON E, ESSAYEM N. Non-catalyzed and Pt/γ-Al2O3-catalyzed hydrothermal cellulose dissolution-conversion: Influence of the reaction parameters and analysis of the unreacted cellulose[J]. Green Chem, 2009, 11(12): 2052-2060.

    18. [18]

      [18] SHROTRI A, TANKSALE A, BELTRAMINI J N, GURAV H, CHILUKURI S V. Conversion of cellulose to polyols over promoted nickel catalysts[J]. Catal Sci Technol, 2012, 2(9): 1852-1858.

    19. [19]

      [19] CAMPBELL C T, GOODMAN D W. A surface science investigation of the role of potassium promoters in nickel catalysts for CO hydrogenation[J]. Surf Sci, 1982, 123(2/3): 413-426.

    20. [20]

      [20] SWAAN H M, KROLL V C H, MARTIN G A, MIRODATOS C. Deactivation of supported nickel catalysts during the re-forming of methane by carbon dioxide[J]. Catal Today, 1994, 21(1): 571-578.

    21. [21]

      [21] LIU Y, LUO C, LIU H C. Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst[J]. Angew Chem Int Ed, 2012, 51(13): 3249-3253.

    22. [22]

      [22] VAN DE VYVER S, GEBOERS J, JACOBS P A, SELS B F. Recent advances in the catalytic conversion of cellulose[J]. ChemCatChem, 2011, 3(1): 82-94.

    23. [23]

      [23] TAI Z J, ZHANG J Y, WANG A Q, ZHENG M Y, ZHANG T. Temperature-controlled phase-transfer catalysis for ethylene glycol production from cellulose[J]. Chem Commun, 2012, 48(56): 7052-7054.

  • 加载中
    1. [1]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    2. [2]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    3. [3]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    4. [4]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    5. [5]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    6. [6]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    7. [7]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    8. [8]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    9. [9]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    10. [10]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    11. [11]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    12. [12]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    13. [13]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    14. [14]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    15. [15]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    16. [16]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    17. [17]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    18. [18]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    19. [19]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    20. [20]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

Metrics
  • PDF Downloads(0)
  • Abstract views(475)
  • HTML views(79)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return