Citation: DENG Jing, LI Wen-ying, LI Xiao-hong, YU Chang-lian, FENG Jie, GUO Xiao-fen. Product distribution of lignite pyrolysis with olivine-based solid heat carrier[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(8): 937-942. shu

Product distribution of lignite pyrolysis with olivine-based solid heat carrier

  • Corresponding author: LI Wen-ying, 
  • Received Date: 29 May 2013
    Available Online: 24 June 2013

    Fund Project: 国家高技术研究发展计划(863计划, 2011AA05A202). (863计划, 2011AA05A202)

  • To improve the quality of tar, and reduce the heavy fraction (whose boiling points are greater than 360 ℃) in the tar, the lignite fast pyrolysis process using olivine and Co-impregnated olivine (Co/olivine) as the solid heat carrier was investigated in a fixed bed reactor over the temperature range 450~600 ℃. The effects of olivine and Co/olivine on the product yield, gas composition and tar fraction were examined. The results show that Co/olivine leads to a decrease in heavy oil fraction content, but an increase in tar yield. Co/olivine makes an increase in tar yield by 19.2% compared to the silica sand, while a decrease in heavy oil fraction content by 17.0% compared to the olivine at 550 ℃. The yield of light oil can reach up to 5.1%, however, the content of light oil, phenol oil and naphthalene oil increases by 19.6%, 17% and 15.2%, respectively. Meanwhile, the content of H2 and CH4 in gaseous product is obviously decreased.
  • 加载中
    1. [1]

      [1] LIANG P, WANG Z F, BI J C. Process characteristics investigation of simulated circulating fluidized bed combustion combined with coal pyrolysis[J]. Fuel Process Technol, 2007, 88(1): 23-28.

    2. [2]

      [2] 张梦蝶, 王泽, 张喜文, 王立昌, 林伟刚, 宋文立. 烟煤固体热载体低温快速热解实验研究[J]. 过程工程学报, 2010, 10(3): 530-535. (ZHANG Meng-die, WANG Ze, ZHANG Xi-wen, WANG Li-chang, LIN Wei-gang, SONG Wen-li. Experimental study on fast pyrolysis of bituminous coals by solid heat Carrier at low temperature[J]. The Chinese Journal of Process Engineering, 2010, 10(3): 530-535.)

    3. [3]

      [3] 曲旋, 张荣, 孙东凯, 毕继诚. 固体热载体热解霍林河褐煤实验研究[J]. 燃料化学学报, 2011, 39(2): 85-89. (QU Xuan, ZHANG Rong, SUN Dong-kai, BI Ji-Cheng. Experiment study on pyrolysis of huolinhe lignite with solid heat carrier[J]. Journal of Fuel Chemistry and Technology, 2011, 39(2): 85-89.)

    4. [4]

      [4] 岑建孟, 方梦祥, 王勤辉, 骆仲泱, 岑可法. 煤分级利用多联产技术及其发展前景[J]. 化工进展, 2011, 30(1): 88-94. (CEN Jian-meng, FANG Meng-xiang, WANG Qin-hui, LUO Zhong-yang, CEN Ke-fa. Development and prospect of coal staged conversion poly-generation technology[J]. Chemical Industry and Engineering Progress, 2011, 30(1): 88-94.)

    5. [5]

      [5] 李文英, 邓靖, 喻长连. 褐煤固体热载体热解提质工艺进展[J]. 煤化工, 2012, 40(1): 1-5. (LI Wen-ying, DENG Jing, YU Chang-lian. Progress of lignite pyrolysis with solid heat carrier and upgrading technology[J]. Coal Chemical Industry, 2012, 40(1): 1-5.)

    6. [6]

      [6] 方梦祥, 岑建孟, 石振晶, 王勤辉, 骆仲泱. 75 t/h循环流化床多联产装置试验研究[J]. 中国电机工程学报, 2010, 30(29): 9-15 (FANG Meng-xiang, CEN Jian-meng, SHI Zhen-jing, WANG Qin-hui, LUO Zhong-yang. Experimental study on 75 t/h circulating fluidized bed poly-generation system[J]. Proceedings of the Chinese Society for Electrical Engineering, 2010, 30(29): 9-15.)

    7. [7]

      [7] ÖZTAS N A, YVRVM Y. Effect of catalysts on the pyrolysis of Turkish Zonguldak bituminous coal[J]. Energy Fuels, 2000, 14(4): 820-827.

    8. [8]

      [8] ZOU X W, YAO J Z, YANG X M, WEN L S, WEI G L. Catalytic effects of metal chlorides on the pyrolysis of lignite[J]. Energy Fuels, 2007, 21: 619-624.

    9. [9]

      [9] LI S, CHEN J S, hAO T, LIANG W B, LIU X T, SUN M, MA X X. Pyrolysis of huang Tu Miao coal over faujasite zeolite and supported transition metal catalysts[J]. J Anal Appl Pyroly, 2013, 102: 161-169.

    10. [10]

      [10] 杨修春, 韦亚南, 李伟捷. 焦油裂解用催化剂的研究进展[J]. 化工进展, 2007, 26(3): 326-330. (YANG Xiu-chun, WEI Ya-nan, LI Wei-jie. Research progress of catalysts for tar cracking[J]. Chemical Industry and Engineering Progress, 2007, 26(3): 326-330.)

    11. [11]

      [11] 秦育红. 生物质气化过程中焦油形成的热化学模型. 太原: 太原理工大学, 2009. (QIN Yu-hong. Thermochemical model of tar formation during biomass gasification. Taiyuan: Taiyuan University of Technology, 2009.)

    12. [12]

      [12] 高晋生. 煤的热解、炼焦和煤焦油加工[M]. 北京: 化学工业出版社, 2010, 273-274. (GAO Jin-sheng. Bei Jing: Coal pyrolysis, cooking and tar processing[M]. Chemical Industry Press, 2010, 273-274.)

    13. [13]

      [13] 邹献武, 姚建中, 杨学民, 宋文立, 林伟刚. 喷动-载流床中Co/ZSM-5分子筛催化剂对煤热解的催化作用[J]. 过程工程学报, 2007, 7(6): 1107-1113. (ZOU Xian-wu, YAO Jian-zhong, YANG Xue-min, SONG Wen-li, LIN Wei-gang. Effect of Co/ZSM-5 zeolite catalyst on pyrolysis of coal in a spouted fluidized bed[J]. The Chinese Journal of Process Engineering, 2007, 7(6): 1107-1113.)

    14. [14]

      [14] 朱学栋, 朱子彬, 韩崇家, 唐黎华. 煤的热解研究Ⅲ.煤中官能团与热解生成物[J]. 华东理工大学学报, 2000, 26(1): 14-17. (ZHU Xue-dong, ZHU Zi-bin, HAN Chong-jia, TANG Li-hua. Fundamental study of coal pyrolysis III. functional group and pyrolysis products[J]. Journal of East China University of Science and Technology, 2000, 26(1): 14-17.)

    15. [15]

      [15] 朱廷钰, 王洋. 氧化铁与碳酸钾对煤温和气化的影响[J]. 化学反应工程与工艺, 2000, 16(2): 203-208. (ZHU Ting-yu, WANG Yang. Effect of Fe2O3-K2CO3 on coal mild gasification[J]. Chemical Reaction Engineering and Technology, 2000, 16(2): 203-208.)

    16. [16]

      [16] 魏立纲, 徐绍平, 刘长厚, 刘淑芹. 预煅烧对橄榄石生物质气化催化性能的影响[J]. 燃料化学学报, 2008, 36(4): 426-430. (WEI Li-gang, XU Shao-ping, LIU Chang-hou, LIU Shu-qin. Effects of precalcination on catalytic activity of olivine in biomass gasification[J]. Journal of Fuel Chemistry and Technology, 2008, 36(4): 426-430.)

    17. [17]

      [17] YANG J B, CAI N S. A TG-FTIR study on catalytic pyrolysis of coal[J]. Journal of Fuel Chemistry and Technology, 2006, 34(6): 650-654.

    18. [18]

      [18] 许莹, 孙小星, 胡宾生. 催化剂对混合煤在快速热解过程中的影响[J]. 化学工程, 2007, 35(4): 65-71. (XU Ying, SUN Xiao-xing, HU Bin-sheng.Effect of combustion catalysts on mixed-coal rapid pyrolysis[J]. Chemical Engineering, 2007, 35(4): 65-71.)

  • 加载中
    1. [1]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    2. [2]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    3. [3]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    4. [4]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    5. [5]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    6. [6]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    7. [7]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    8. [8]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    9. [9]

      Yu Peng Jiawei Chen Yue Yin Yongjie Cao Mochou Liao Congxiao Wang Xiaoli Dong Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087

    10. [10]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    13. [13]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    14. [14]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    15. [15]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    16. [16]

      Jingjie Tang Luying Xie Jiayu Liu Shangyu Shi Xinyu Sun Jiayang Lin Qikun Yang Chuan'ang Yu Zecheng Wang Yingying Wang Zengyang Xie . Efficient Rapid Synthesis and Antibacterial Activities of Tosylhydrazones: A Recommended Innovative Chemistry Experiment for Undergraduate Medical University. University Chemistry, 2024, 39(3): 316-326. doi: 10.3866/PKU.DXHX202309091

    17. [17]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    18. [18]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    19. [19]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    20. [20]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

Metrics
  • PDF Downloads(0)
  • Abstract views(834)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return