Citation: CHEN Zong-ding, GONG Xu-zhong, WANG Zhi, WANG Yong-gang, ZHANG Shu, XU De-ping. Sulfur removal from ionic liquid-assisted coal water slurry electrolysis in KNO3 system[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(8): 928-936. shu

Sulfur removal from ionic liquid-assisted coal water slurry electrolysis in KNO3 system

  • Corresponding author: GONG Xu-zhong, 
  • Received Date: 10 January 2013
    Available Online: 1 April 2013

    Fund Project: Nature Science Foundation of China(51004090) (51004090)

  • Ionic liquid-assisted coal water slurry (CWS) electrolysis was carried out in KNO3 system with constant current. The effects of ionic liquids including structure, concentration, temperature and time on the removal of sulfur were investigated to intensify desulfurization ratio from CWS electrolysis. Given the organic structure of imidazole, the influence of anions on the desulfurization was in the following order: Br->BF4- >Cl-. Given the same anion of Br-, imidazole showed better performance than pyridine in terms of sulfur elimination. With increasing N-butylpyridinium bromide ([BPy]Br) concentration, the desulfurization ratio increased at the initial stage, and then decreased after 0.30 mol/L. Additionally, the desulfurization ratio continuously increased with time and temperature. Finally, the organic sulfur occurrences in coal before and after experiments were characterized by XPS technique. Results showed that the removal of thiophene was improved due to the extraction-oxidation effects and others (i.e. thioethers and sulfoxide) were removed mainly via enhanced oxidation and hydrolysis reactions.
  • 加载中
    1. [1]

      [1] SHASHI B, LALVANI S B, SHAMI M. Anodic depolarization by aqueous pyrite slurries in the production of hydrogen[J]. Fuel, 1985, 64(8): 1075-1078.

    2. [2]

      [2] COUGHLIN R W, FAROOQUE M. Hydrogen production from coal, water and electrons[J]. Nature, 1979, 297: 301-303.

    3. [3]

      [3] FAROOQUE M, COUGHLIN R W. Anodic coal reaction lowers energy consumption of metal electrowinning[J]. Nature, 1979, 280: 666-668.

    4. [4]

      [4] FAROOQUE M, COUGHLIN R W. Electrochemical gasification of coal (investigation of operating conditions and variables)[J]. Fuel, 1979, 85(10): 705-712.

    5. [5]

      [5] LALVANI S B, PATA M, COUGHLIN R W. Sulphur removal from coal by electrolysis[J]. Fuel, 1983, 62(4): 427-437.

    6. [6]

      [6] WAPNER P G, LALVANI S B, AWAD G. Organic sulfur removal from coal by electrolysis in alkaline media[J]. Fuel Process Technol, 1988, 18(1): 25-36.

    7. [7]

      [7] LALVANI S B, NAND S. Electrolytic pretreatment of Illinois No.6 coal[J]. Fuel Process Technol, 1985, 11(1): 25-36.

    8. [8]

      [8] SHEN Y F, SUN T H, JIA J P. A novel desulphurization process of coal water slurry via sodium metaborate electroreduction in the alkaline system[J]. Fuel, 2012, 96: 250-256.

    9. [9]

      [9] ZHONG S T, ZHAO W, SHENG C, XU W J, ZONG Z M,WEI X Y. Mechanismfor removal of organic sulfur from guiding subbituminous coal by electrolysis[J]. Energy Fuels, 2011, 25(8): 3687-3692.

    10. [10]

      [10] BORAH D. Electron-Transfer-Induced desulfurization of organic sulfur from sub-bituminous coal[J]. Energy Fuels, 2004, 18(5): 1463-1471.

    11. [11]

      [11] 易平贵, 刘俊峰, 陈安国. 水-有机溶剂混合体系中高硫煤电解脱硫的研究[J]. 洁净煤技术, 1998, 4(4): 48-51.

    12. [12]

      (YI Ping-gui, LIU Jun-feng, CHEN An-guo. Study on desulfurization of coal by electrolysis in water-organic solvent mixtures[J]. Clean Coal Technol, 1998, 4(4): 48-51.)

    13. [13]

      [12] 崔才喜, 徐龙君. 正丙醇脱煤中有机硫的机理分析[J]. 煤炭转化, 2008, 31(3): 55-58.

    14. [14]

      (CUI Cai-xi, XU Long-jun. Analysis on mechanism of organic sulfur removal from coal by n-propanol [J]. Coal Conversion, 2008, 31(3): 55-58.)

    15. [15]

      [13] ZHU W S, ZHU G P, LI H M, CHAO Y H, CI Y H, HAN C R. Oxidative desulfurization of fuel catalyzed by metal-based surfactant-type ionic liquids[J]. J Mol Catal A: Chem, 2011, 347(1/2): 8-14.

    16. [16]

      [14] SCHUCKER R C, BAIRD W C. Electrochemical oxidation of sulfur compounds in naphthausing ionic liquids: US, 6338788 B1[P]. 2002.

    17. [17]

      [15] ROBERT C S, WILLIAM C B. Electrochemical oxidation of sulfur compounds in naphthausing ionic liquids US: 6274026B1[P]. 2001.

    18. [18]

      [16] ZHU W S, HUANG W L, LI H M, ZHANG M, JIANG W, CHEN G Y, HAN C R. Polyoxometalate-based ionic liquids as catalysts for deep desulfurization of fuels[J]. Fuel Process Technol, 2011, 92(10): 1842-1848.

    19. [19]

      [17] ZHANG S G, ZHANG Q L. Extractive desulfurization and denitrogenation of fuel using ionic liquids[J]. Ind End Chem Res, 2004, 43(2): 614-622.

    20. [20]

      [18] FRANCISCO M, ARCE A, SOTO A. Ionic liquids on desulfurization of fuel oils[J]. Fluid Phase Equilib, 2010, 294(1/2): 39-48.

    21. [21]

      [19] ZHANG C, PAN X Y, WANG F, LIU X Q. Extraction-oxidation desulfurization by pyridinium-based task-specific ionic liquids[J]. Fuel, 2012, 102: 580-584.

    22. [22]

      [20] LAM V, LI G C, SONG C J, CHEN J W, FAIRBRIDGE C,HUI R, ZHANG J J. A review of electrochemical desulfurization technologies for fossil fuels[J]. Fuel Process Technol, 2012, 98: 30-38.

    23. [23]

      [21] GONG X Z, WANG M Y, WANG Z, GUO Z C. Desulfuration of electrolyzed coal water slurry in HCl system with ionic liquid addition[J]. Fuel Process Technol, 2012, 99(1): 6-12.

    24. [24]

      [22] FROST D C, LEEDER W R, ROBERT L. X-ray photoelectron spectroscopic investigation of coal[J]. Fuel, 1974, 53(3): 206-210.

    25. [25]

      [23] HITTLE L R, SHARKEY A G, FROST D C. Determination of sulfur of coal sulfur of coal surfaces by X-ray photoelectron spectroscopy[J]. Fuel, 1993, 72(6): 771-776.

    26. [26]

      [24] ZHANG S, ZHANG Q, ZHANG Z. Extractive desulfurization and denitrogenation of fuels using ionic liquids[J]. Ind Eng Chem Res, 2004, 43(2): 614-622.

    27. [27]

      [25] HOLBREY J D, REICHERT W, NIEUWENHUYZEN M, SHEPPARD O, HARDACRE C, ROQUES R D. Liquid clathrate formation in ionic liquid-aromatic mixture[J]. Chem Commun, 2003, (4): 476-477.

    28. [28]

      [26] ZHANG S, ZHANG Z C. Novel properties of ionic liquids in selective sulfur removal from fuels at room temperature[J]. Green Chem, 2002, 4(4): 376-379.

    29. [29]

      [27] 罗道成, 易平贵, 刘俊峰, 胡忠于. 酸性体系H2O-NaBr混合溶剂中煤的电化学脱硫研究[J]. 煤化工, 2002, 98(1): 12-15.

    30. [30]

      (LUO Dao-cheng, YI Ping-gui, LIU Jun-feng, Hu Zhong-yu. Study on desulfurization of coal by electrolysis in mixed solvent of H2O-NaBr in acidic system[J]. Coal Chemical Industry, 2002, 98(1): 12-15.)

    31. [31]

      [28] JIN X, BOTTE G G. Feasibility of hydrogen production from coal electrolysis at intermediate temperatures[J]. J Power Sources, 2007, 171(2): 826-834.

    32. [32]

      [29] JIN X, BOTTE G G. Understanding the kinetics of coal electrolysis at intermediate temperatures[J]. J Power Sources, 2010, 195(15): 4935-4942.

    33. [33]

      [30] PATIL P, DE A Y, BOTTE G G. Electrooxidation of coal slurries on different electrode materials[J]. J Power Sources, 2006, 158(1): 368-377.

    34. [34]

      [31] 张永涛, 张国栋. 甘霖煤碱性体系中电解脱硫研究[J]. 马钢职工大学学报, 2001, 11(4): 17-22. ZHANG Y T, ZHANG G D. The removal of sulfur from coal in Ganlin by electrolysis[J]. Journal of Magang Staff and Workers’ University, 2001, 11(4): 17-22.

    35. [35]

      [32] 罗道成, 刘俊峰. 碱性体系中煤中有机硫的电化学脱除研究[J]. 煤化工, 2005, 118(3): 29-32.

    36. [36]

      (LUO Dao-cheng, LIU Jun-feng. Study on organic sulfur removal from coal by electrolysis in alkaline media[J]. Coal Chemisty Industry, 2005, 118(3): 29-32.)

    37. [37]

      [33] MOROOKA S, MUREKAMI A K. Organic sulfur removal from coal[J]. Fuel, 1984, 63: 947-950.

    38. [38]

      [34] DOWERAH D, BARUAH M K. Removal of organic sulphur from high sulphur Indian coal[J]. Fuel, 1999, 78(9): 1083-1089.

    39. [39]

      [35] TAKAHASHI A, YANG F H, YANG R T. New sorbents for desulfurization by [WTBZ]π[WTB1]-complexation: Thiophene/benzene adsorption[J]. Ind Eng Chem Res, 2002, 41(10): 2487-2496.

    40. [40]

      [36] 张进, 朴香兰, 朱慎林. 新型离子液体对苯并噻吩、二苯并噻吩的萃取性能研究[J]. 石油炼制与化工, 2008, 39(2): 38-41.

    41. [41]

      (ZHANG Jin, PIAO Xiang-lan, ZHU Shen-lin. Study on the extraction performance of new ionic liquid for removing benzothiophene and dibenzothiophene[J]. Petroleum processing and petrochemicals, 2008, 39(2): 38-41.)

  • 加载中
    1. [1]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    2. [2]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    3. [3]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    4. [4]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    5. [5]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    6. [6]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    7. [7]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    8. [8]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    9. [9]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    10. [10]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    11. [11]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    12. [12]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    13. [13]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    14. [14]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    15. [15]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    16. [16]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    17. [17]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    18. [18]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    19. [19]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    20. [20]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

Metrics
  • PDF Downloads(0)
  • Abstract views(863)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return